Ho Nam Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11326231/publications.pdf

Version: 2024-02-01

36303 53230 9,250 202 51 85 citations g-index h-index papers 253 253 253 7624 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Volatile Fatty Acids from Lipid-Extracted Yeast Provide Additional Feedstock for Microbial Lipid Production. Catalysts, 2021, 11, 1009.	3 . 5	6
2	Chang approximation for the osmotic pressure of dilute to concentrated solutions. Korean Journal of Chemical Engineering, 2020, 37, 583-587.	2.7	0
3	Engineering Trichosporon oleaginosus for enhanced production of lipid from volatile fatty acids as carbon source. Korean Journal of Chemical Engineering, 2019, 36, 903-908.	2.7	9
4	Enhanced microbial lipid production by <i>Cryptococcus albidus</i> in theÂhigh-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 1045-1051.	3.0	19
5	Production of microbial lipid by Cryptococcus curvatus on rice straw hydrolysates. Process Biochemistry, 2017, 56, 147-153.	3.7	49
6	Optimization of volatile fatty acids and hydrogen production from Saccharina japonica: acidogenesis and molecular analysis of the resulting microbial communities. Applied Microbiology and Biotechnology, 2015, 99, 3327-3337.	3.6	35
7	A comprehensive study on volatile fatty acids production from rice straw coupled with microbial community analysis. Bioprocess and Biosystems Engineering, 2015, 38, 1157-1166.	3.4	22
8	Enhancement of volatile fatty acids production from rice straw via anaerobic digestion with chemical pretreatment. Bioprocess and Biosystems Engineering, 2015, 38, 1623-1627.	3.4	18
9	Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess and Biosystems Engineering, 2015, 38, 691-700.	3.4	100
10	Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production. Biotechnology Journal, 2014, 9, 1536-1546.	3.5	50
11	Electrochemical Activity Studies of Glucose Oxidase (GOx)-Based and Pyranose Oxidase (POx)-Based Electrodes in Mesoporous Carbon: Toward Biosensor and Biofuel Cell Applications. Electroanalysis, 2014, 26, 2075-2079.	2.9	10
12	Multi-stage continuous high cell density culture systems: A review. Biotechnology Advances, 2014, 32, 514-525.	11.7	39
13	Volatile fatty acid production from lignocellulosic biomass by lime pretreatment and its applications to industrial biotechnology. Biotechnology and Bioprocess Engineering, 2013, 18, 1163-1168.	2.6	22
14	Bioprocessing aspects of fuels and chemicals from biomass. Korean Journal of Chemical Engineering, 2012, 29, 831-850.	2.7	41
15	Thermal Properties and Biodegradability Studies of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Journal of Polymers and the Environment, 2012, 20, 23-28.	5.0	56
16	Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnology Letters, 2011, 33, 705-714.	2.2	71
17	Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess and Biosystems Engineering, 2011, 34, 419-431.	3.4	47
18	The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresource Technology, 2011, 102, 2695-2701.	9.6	252

#	Article	IF	CITATIONS
19	Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresource Technology, 2011, 102, 7466-7469.	9.6	283
20	Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnology and Bioprocess Engineering, 2011, 16, 482-487.	2.6	88
21	Steam reforming of volatile fatty acids (VFAs) over supported Pt/Al2O3 catalysts. International Journal of Hydrogen Energy, 2011, 36, 7505-7515.	7.1	23
22	Development of anaerobically inducible nar promoter expression vectors for the expression of recombinant proteins in Escherichia coli. Journal of Biotechnology, 2011, 151, 102-107.	3.8	7
23	Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells. Biosensors and Bioelectronics, 2010, 26, 655-660.	10.1	45
24	Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniciproducens grown on glycerol. Bioprocess and Biosystems Engineering, 2010, 33, 465-471.	3.4	36
25	On-site removal of H2S from biogas produced by food waste using an aerobic sludge biofilter for steam reforming processing. Biotechnology and Bioprocess Engineering, 2010, 15, 505-511.	2.6	22
26	Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnology and Bioprocess Engineering, 2010, 15, 1-10.	2.6	199
27	Economic evaluation of off-gas recycle pressure swing adsorption (PSA) in industrial scale poly(3-hydroxybutyrate) fermentation. Biotechnology and Bioprocess Engineering, 2010, 15, 905-910.	2.6	9
28	Enhanced Production of Human Serum Albumin by Fed-Batch Culture of Hansenula polymorpha with High-Purity Oxygen. Journal of Microbiology and Biotechnology, 2010, 20, 1534-1538.	2.1	12
29	Stable constitution of artificial oil body for the refolding of IGF1. Biotechnology and Bioprocess Engineering, 2009, 14, 161-167.	2.6	2
30	A flow injection analysis system with encapsulated high-density Saccharomyces cerevisiae cells for rapid determination of biochemical oxygen demand. Applied Microbiology and Biotechnology, 2009, 83, 217-223.	3.6	26
31	Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production. Bioresource Technology, 2009, 100, 3245-3251.	9.6	170
32	Removal of volatile fatty acids (VFA) by microbial fuel cell with aluminum electrode and microbial community identification with 16S rRNA sequence. Korean Journal of Chemical Engineering, 2008, 25, 535-541.	2.7	30
33	Two-stage depth filter perfusion culture for recombinant antibody production by recombinant Chinese hamster ovary cell. Biotechnology and Bioprocess Engineering, 2008, 13, 560-565.	2.6	10
34	High cell density ethanol fermentation in an upflow packed-bed cell recycle bioreactor. Biotechnology and Bioprocess Engineering, 2008, 13, 123-135.	2.6	19
35	Long-term operation of depth filter perfusion systems (DFPS) for monoclonal antibody production using recombinant CHO cells: Effect of temperature, pH, and dissolved oxygen. Biotechnology and Bioprocess Engineering, 2008, 13, 401-409.	2.6	21
36	Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/Shell Nanoparticles and their Application as Magnetically Separable Highâ€Performance Biocatalysts. Small, 2008, 4, 143-152.	10.0	351

#	Article	IF	Citations
37	Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresource Technology, 2008, 99, 7866-7874.	9.6	243
38	One-dimensional crosslinked enzyme aggregates in SBA-15: Superior catalytic behavior to conventional enzyme immobilization. Microporous and Mesoporous Materials, 2008, 111, 18-23.	4.4	69
39	Sequential Feeding of Glucose and Valerate in a Fed-Batch Culture of Ralstonia eutropha for Production of Poly(hydroxybutyrate-co-hydroxyvalerate) with High 3-Hydroxyvalerate Fraction. Biotechnology Progress, 2008, 20, 140-144.	2.6	44
40	Recombinant Antibody Production by Perfusion Cultures of rCHO Cells in a Depth Filter Perfusion System. Biotechnology Progress, 2008, 21, 134-139.	2.6	24
41	Limited Use of Centritech Lab II Centrifuge in Perfusion Culture of rCHO Cells for the Production of Recombinant Antibody. Biotechnology Progress, 2008, 24, 166-174.	2.6	21
42	Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnology and Bioengineering, 2007, 96, 210-218.	3.3	187
43	Modeling of poly(3-hydroxybutyrate) production by high cell density fed-batch culture of Ralstonia eutropha. Biotechnology and Bioprocess Engineering, 2007, 12, 417-423.	2.6	14
44	Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean Journal of Chemical Engineering, 2007, 24, 265-271.	2.7	77
45	Nitrate removal in a packed bed reactor using volatile fatty acids from anaerobic acidogenesis of food wastes. Biotechnology and Bioprocess Engineering, 2006, 11, 538-543.	2.6	35
46	Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2006, 39, 62-68.	1.8	89
47	Fermentation characteristics of a low-oxygen induciblehmp promoter system inBacillus subtilis LAB1886. Journal of Chemical Technology and Biotechnology, 2006, 81, 1071-1074.	3. 2	6
48	Simple Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates. Small, 2005, 1, 744-753.	10.0	184
49	A Magnetically Separable, Highly Stable Enzyme System Based on Nanocomposites of Enzymes and Magnetic Nanoparticles Shipped in Hierarchically Ordered, Mesocellular, Mesoporous Silica. Small, 2005, 1, 1203-1207.	10.0	106
50	Recovery of Ammonium Lactate and Removal of Hardness from Fermentation Broth by Nanofiltration. Biotechnology Progress, 2004, 20, 764-770.	2.6	19
51	Selective extraction of acetic acid from the fermentation broth produced by Mannheimia succiniciproducens. Biotechnology Letters, 2004, 26, 1581-1584.	2.2	40
52	High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess and Biosystems Engineering, 2004, 26, 147-150.	3.4	99
53	Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme and Microbial Technology, 2004, 35, 648-653.	3.2	158
54	PROTEIN PARTITIONING IN POLYETHYLENGLYCOL/POTASSIUM PHOSPHORIC ACID AQUEOUS TWO-PHASE SYSTEMS FOR PURIFICATION OF MEMBRANE PROTEIN. , 2004, , .		0

#	Article	IF	Citations
55	Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnology Letters, 2003, 25, 1415-1419.	2.2	98
56	Regioselective enzymatic acylation of multi-hydroxyl compounds in organic synthesis. Biotechnology and Bioprocess Engineering, 2003, 8, 1-8.	2.6	42
57	Simulation on long-term operation of an anaerobic bioreactor for Korean food wastes. Biotechnology and Bioprocess Engineering, 2003, 8, 23-31.	2.6	15
58	Inhibitory effect of carbon dioxide on the fed-batch culture of Ralstonia eutropha: Evaluation by CO2 pulse injection and autogenous CO2 methods. Biotechnology and Bioengineering, 2003, 83, 312-320.	3.3	37
59	Fed-Batch Cultures of Escherichia coli Cells with Oxygen-Dependent nar Promoter Systems. Advances in Biochemical Engineering/Biotechnology, 2002, 74, 171-181.	1.1	1
60	Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxy-valerate) by fed-batch culture of recombinantEscherichia coli. Biotechnology and Bioprocess Engineering, 2002, 7, 371-374.	2.6	27
61	Cloning and characterization of Mannheimia succiniciproducens MBEL55E phosphoenolpyruvate carboxykinase (pckA) gene. Biotechnology and Bioprocess Engineering, 2002, 7, 95-99.	2.6	5
62	Optimization of culture conditions and continuous production of chitosan by the fungi, Absidia coerulea. Biotechnology and Bioprocess Engineering, 2001, 6, 6-10.	2.6	23
63	Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and Bioengineering, 2001, 72, 41-48.	3. 3	254
64	Chemoenzymatic synthesis of sucrose-containing aromatic polymers. Biotechnology and Bioengineering, 2001, 72, 541-547.	3.3	7
65	Characterization of an oxygen-dependent inducible promoter, thenar promoter of Escherichia coli, to utilize in metabolic engineering. Biotechnology and Bioengineering, 2001, 72, 573-576.	3.3	12
66	High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnology and Bioengineering, 2001, 73, 25-34.	3.3	119
67	Efficient recovery of ?-poly (glutamic acid) from highly viscous culture broth. Biotechnology and Bioengineering, 2001, 76, 219-223.	3. 3	54
68	Title is missing!. Biotechnology Letters, 2001, 23, 983-988.	2.2	10
69	Specific Cd2+ uptake of encapsulated Aureobasidium pullulans biosorbents. Biotechnology Letters, 2001, 23, 1391-1396.	2.2	5
70	Production of a Desulfurization Biocatalyst by Two-Stage Fermentation and Its Application for the Treatment of Model and Diesel Oils. Biotechnology Progress, 2001, 17, 876-880.	2.6	51
71	Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source., 2001, 72, 41.		1
72	Succinic acid production with reduced byâ€product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and Bioengineering, 2001, 72, 41-48.	3.3	4

#	Article	IF	CITATIONS
73	Synthesis of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli., 2000, 49, 495-503.		26
74	Development and characterization of an oxygen-dependent inducible promoter system, the modifiednar promoter in a mutantEscherichia coli., 2000, 68, 115-120.		14
75	Continuous Ethanol Production from Concentrated Wood Hydrolysates in an Internal Membrane-Filtration Bioreactor. Biotechnology Progress, 2000, 16, 302-304.	2.6	42
76	Desulfurization of light gas oil in immobilized-cell systems of Gordonasp. CYKS1 and Nocardiasp. CYKS2. FEMS Microbiology Letters, 2000, 182, 309-312.	1.8	68
77	Enzymatic regioselective synthesis of sucrose acrylate esters. Biotechnology Letters, 2000, 22, 39-42.	2.2	14
78	Production of poly-Î ³ -glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnology Letters, 2000, 22, 585-588.	2.2	93
79	Selective extraction of succinic acid from binary mixture of succinic acid and acetic acid. Biotechnology Letters, 2000, 22, 871-874.	2.2	38
80	Desulfurization of model and diesel oils by resting cells of Gordona sp Biotechnology Letters, 2000, 22, 193-196.	2.2	45
81	Operation and modeling of bench-scale SBR for simultaneous removal of nitrogen and phosphorus using real wastewater. Biotechnology and Bioprocess Engineering, 2000, 5, 441-448.	2.6	8
82	Fermentative production of succinic acid from glucose and corn steep liquor by Anaerobiospirillum succiniciproducens. Biotechnology and Bioprocess Engineering, 2000, 5, 379-381.	2.6	65
83	Simulation of sequential batch reactor (SBR) operation for simultaneous removal of nitrogen and phosphorus. Bioprocess and Biosystems Engineering, 2000, 23, 513-521.	3.4	42
84	Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS Microbiology Letters, 2000, 182, 309-312.	1.8	6
85	Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Process Biochemistry, 1999, 35, 49-55.	3.7	68
86	Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose concentration. Enzyme and Microbial Technology, 1999, 24, 549-554.	3.2	134
87	Ethanol Production Using Concentrated Oak Wood Hydrolysates and Methods to Detoxify. Applied Biochemistry and Biotechnology, 1999, 78, 547-560.	2.9	63
88	Biological removal of pyridine in heavy oil byRhodococcus sp. KCTC 3218. Biotechnology and Bioprocess Engineering, 1999, 4, 205-209.	2.6	2
89	Fed-batch hairy root cultures within situ separation. Biotechnology and Bioprocess Engineering, 1999, 4, 106-111.	2.6	6
90	Reusable biosorbents in capsules fromzoogloea ramigera cells for cadmium removal. , 1999, 63, 116-121.		55

#	Article	IF	Citations
91	Production of poly (3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnology Letters, 1998, 20, 109-112.	2.2	58
92	Bacteriorhodopsin production by cell recycle culture of Halobacterium halobium. Biotechnology Letters, 1998, 20, 763-765.	2.2	20
93	Improved Production of a Bioadhesive Precursor Protein by Fed-Batch Cultivation of a Recombinant Escherichia coli with a pLysS Vector. Biotechnology Letters, 1998, 20, 799-803.	2.2	15
94	Desulfurization of Diesel Oils by a Newly Isolated Dibenzothiophene-Degrading Nocardia sp. Strain CYKS2. Biotechnology Progress, 1998, 14, 851-855.	2.6	68
95	Fed-batch cultivation of an oxygen-dependent inducible promoter system, thenar promoter inEscherichia coli with an inactivatednar operon. , 1998, 59, 400-406.		17
96	Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli., 1998, 60, 271-276.		63
97	Separation of oil contaminants by surfactant-aided foam fractionation. Korean Journal of Chemical Engineering, 1998, 15, 445-448.	2.7	18
98	Desulfurization of Dibenzothiophene and Diesel Oils by a Newly Isolated <i>Gordona</i> Strain, CYKS1. Applied and Environmental Microbiology, 1998, 64, 2327-2331.	3.1	159
99	Effect of B vitamin supplementation on lactic acid production by Lactobacillus casei. Journal of Bioscience and Bioengineering, 1997, 84, 172-175.	0.9	54
100	Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phospate limitation., 1997, 55, 28-32.		162
101	Production of poly(3â€hydroxybutyrate) by high cell density fedâ€batch culture of Alcaligenes eutrophus with phospate limitation. Biotechnology and Bioengineering, 1997, 55, 28-32.	3.3	1
102	Characteristics of Poly(3-Hydroxybutyric Acid) Synthesis by Recombinant Escherichia colia. Annals of the New York Academy of Sciences, 1996, 782, 133-142.	3.8	8
103	Microfiltration of yeast cells in an internal filter reactor. Korean Journal of Chemical Engineering, 1996, 13, 404-408.	2.7	5
104	Continuous ethanol production from wood hydrolysate by chemostat and total cell retention culture. Korean Journal of Chemical Engineering, 1996, 13, 453-456.	2.7	18
105	Desulfurization in a plate-type gas-lift photobioreactor using light emitting diodes. Korean Journal of Chemical Engineering, 1996, 13, 606-611.	2.7	20
106	Microencapsulation of recombinantSaccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules. Biotechnology and Bioengineering, 1996, 51, 157-162.	3.3	60
107	Reaction kinetics of lactic acid with methanol catalyzed by acid resins. International Journal of Chemical Kinetics, 1996, 28, 37-41.	1.6	40
108	Encapsulation of Lactobacillus casei cells in liquid-core alginate capsules for lactic acid production. Enzyme and Microbial Technology, 1996, 19, 428-433.	3.2	69

#	Article	IF	Citations
109	Cell separation from high cell density broths of Alcaligenes eutrophus by using a coagulant. Biotechnology Letters, 1996, 10, 899.	0.5	5
110	Synthesis of polyâ€(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) by recombinant Escherichia coli. Biotechnology and Bioengineering, 1996, 49, 495-503.	3.3	21
111	Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules., 1996, 51, 157.		2
112	Effect of acetic acid on poly-(3-hydroxybutyrate-CO-3-hydroxyvalerate) synthesis in recombinantEscherichia coli. Korean Journal of Chemical Engineering, 1995, 12, 264-268.	2.7	8
113	Effect of polymer position in nutrient-salt agar medium on fungal degradation of polycaprolactone. Korean Journal of Chemical Engineering, 1995, 12, 320-324.	2.7	1
114	Control of glucose feeding using exit gas data and its application to the production of PHB from tapioca hydrolysate byAlcaligenes eutrophus. Biotechnology Letters, 1995, 9, 311-314.	0.5	25
115	Size analysis of poly(3-hydroxybutyric acid) granules produced in recombinant Escherichia coli. Biotechnology Letters, 1995, 17, 205-210.	2.2	14
116	Production of poly(?-hydroxybutyrate-co-?-hydroxyvalerate) from glucose and valerate in Alcaligenes eutrophus. Biotechnology Letters, 1995, 17, 571-574.	2.2	17
117	Enzymatic polytransesterification of aromatic diols in organic solvents. Biotechnology Letters, 1995, 17, 1085-1090.	2.2	9
118	Continuous production of tissue plasminogen activator from recombinant CHO cells in a depth filter perfusion system. Biotechnology Letters, 1995, 9, 567-572.	0.5	9
119	Polymerization of aqueous lactic acid to prepare high molecular weight poly(lactic acid) by chain-extending with hexamethylene diisocyanate. Polymer Bulletin, 1995, 35, 415-421.	3.3	74
120	Extractive plant cell culture. Current Opinion in Biotechnology, 1995, 6, 209-212.	6.6	15
121	Stimulatory effects of amino acids and oleic acid on poly(3-hydroxybutyric acid) synthesis by recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 1995, 79, 177-180.	0.9	45
122	Production of poly(3-hydroxybutyric acid) by recombinant <i>Escherichia coli</i> strains: genetic and fermentation studies. Canadian Journal of Microbiology, 1995, 41, 207-215.	1.7	87
123	Production of poly(hydroxyalkanoic acid). Advances in Biochemical Engineering/Biotechnology, 1995, 52, 27-58.	1.1	52
124	High cell density perfusion cultures of anchorage-dependent Vero cells in a depth filter perfusion system. Cytotechnology, 1995, 17, 173-183.	1.6	9
125	Enzymatic Synthesis of Various Aromatic Polyesters in Anhydrous Organic Solvents. Biocatalysis, 1994, 11, 263-271.	0.9	44
126	A cell retention internal filter reactor for ethanol production using tapioca hydrolysates. Biotechnology Letters, 1994, 8, 817-820.	0.5	17

#	Article	IF	CITATIONS
127	Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnology and Bioengineering, 1994, 43, 892-898.	3.3	294
128	Optimization of microbial poly(3-hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnology and Bioengineering, 1994, 44, 256-261.	3.3	196
129	High-density continuous cultures of hybridoma cells in a depth filter perfusion system. Biotechnology and Bioengineering, 1994, 44, 895-901.	3.3	27
130	Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) by fed-batch culture of Alcaligenes eutrophus with substrate control using on-line glucose analyzer. Enzyme and Microbial Technology, 1994, 16, 556-561.	3.2	91
131	Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: Effects of in situ adsorption, fungal elicitation and permeabilization. Journal of Bioscience and Bioengineering, 1994, 78, 229-234.	0.9	63
132	Effect of complex nitrogen source on the synthesis and accumulation of poly(3-hydroxybutyric acid) by recombinantEscherichia coli in flask and fed-batch cultures. Journal of Polymers and the Environment, 1994, 2, 169-176.	0.6	68
133	Synthesis of copolyesters containing poly(ethylene terephthalate) and poly(ε-caprolactone) units and their susceptibility toPseudomonas sp. lipase. Journal of Polymers and the Environment, 1994, 2, 9-18.	0.6	47
134	Characteristics and performance of an autotuning proportional integral derivative controller for dissolved oxygen concentration. Biotechnology Progress, 1994, 10, 447-450.	2.6	14
135	High density cell culture by membrane-based cell recycle. Biotechnology Advances, 1994, 12, 467-487.	11.7	67
136	Production of Poly(?-Hydroxybutyric Acid) by Recombinant Escherichia colia. Annals of the New York Academy of Sciences, 1994, 721, 43-52.	3.8	38
137	Shikonin Production by Extractive Cultivation in Transformedâ€suspension and Hairy Root Cultures of ⟨i>Lithospermum erythrorhizon⟨/i>⟨sup>a⟨/sup>. Annals of the New York Academy of Sciences, 1994, 745, 442-454.	3.8	12
138	Current Status of Biodegradable Plastics in Korea: Research, Commercial Production and Government Policy. Studies in Polymer Science, 1994, 12, 286-297.	0.2	3
139	Production of Plant Secondary Metabolites by Extractive Cultivation. , 1994, , 355-369.		0
140	Cell retention culture with an internal filter module: Continuous ethanol fermentation. Biotechnology and Bioengineering, 1993, 41, 677-681.	3.3	41
141	Production ofBacillus thuringiensis spores in total cell retention culture and two-stage continuous culture using an internal ceramic filter system. Biotechnology and Bioengineering, 1993, 42, 1107-1112.	3.3	26
142	Microencapsulation of yeast cells in the calcium alginate membrane. Biotechnology Letters, 1993, 7, 879-884.	0.5	51
143	High cell density cultivation of Escherichia coli W using sucrose as a carbon source. Biotechnology Letters, 1993, 15, 971-974.	2.2	107
144	Increased shikonin production by hairy roots of Lithospermum erythrorhizon in two phase bubble column reactor. Biotechnology Letters, 1993, 15, 145-150.	2,2	47

#	Article	IF	CITATIONS
145	The recovery of poly(3-hydroxybutyrate) by using dispersions of sodium hypochlorite solution and chloroform. Biotechnology Letters, 1993, 7, 209-212.	0.5	45
146	Adsorption behavior of albumin and .BETAlactamase in alginate-encapsulated deae-trisacryl beads Journal of Chemical Engineering of Japan, 1993, 26, 317-320.	0.6	2
147	Continuous Production of 6-APA in an Aqueous Two-Phase System. Annals of the New York Academy of Sciences, 1992, 672, 643-648.	3.8	9
148	Extractive ethanol production in a membrane cell recycle bioreactor. Journal of Biotechnology, 1992, 24, 329-343.	3.8	27
149	Enhanced spore production ofBacillus thuringiensis by fed-batch culture. Biotechnology Letters, 1992, 14, 721-726.	2.2	36
150	Production of poly-?-hydroxybutyrate by fed-batch culture of recombinantEscherichia coli. Biotechnology Letters, 1992, 14, 811-816.	2.2	83
151	High density culture of hybridoma cells in a dual hollow fiber bioreactor. Biotechnology Letters, 1992, 6, 77-82.	0.5	10
152	Growth kinetics of the photosynthetic bacteriumChlorobium thiosulfatophilum in a fed-batch reactor. Biotechnology and Bioengineering, 1992, 40, 583-592.	3.3	39
153	Continuous Production of Biomass and Metabolites in High Cell Density Membrane Bioreactor. , 1992, , 444-446.		0
154	Membrane bioreactors: Present and prospects. Advances in Biochemical Engineering/Biotechnology, 1991, 44, 27-64.	1.1	18
155	Removal of hydrogen sulfide by Chlorobium thiosulfatophilum in immobilized-cell and sulfur-settling free-cell recycle reactors. Biotechnology Progress, 1991, 7, 495-500.	2.6	41
156	Pressure drop and mass transfer around perforated turbulence promoters placed in a circular tube. International Journal of Heat and Mass Transfer, 1991, 34, 1909-1916.	4.8	3
157	Adaptive control of dissolved oxygen concentration in a bioreactor. Biotechnology and Bioengineering, 1991, 37, 597-607.	3.3	45
158	Dissolved oxygen concentration regulation using auto-tuning proportional-integral-derivative controller in fermentation process. Biotechnology Letters, 1991, 5, 85-90.	0.5	23
159	Hollow fiber bioreactors with internal aeration circuits. Journal of Bioscience and Bioengineering, 1990, 69, 175-177.	0.9	5
160	Increased shikonin production inLithospermum erythrorhizon suspension cultures within situ extraction and fungal cell treatment (elicitor). Biotechnology Letters, 1990, 12, 443-446.	2.2	33
161	Bioconversion of hydrogen sulfide by free and immobilized cells ofChlorobium thiosulfatophilum. Biotechnology Letters, 1990, 12, 381-386.	2.2	22
162	High cell density culture of a recombinantEscherichia coli producing penicillin acylase in a membrane cell recycle fermentor. Biotechnology and Bioengineering, 1990, 36, 330-337.	3.3	69

#	Article	IF	Citations
163	Enhanced shikonin production fromLithospermum erythrorhizon by in situ extraction and calcium alginate immobilization. Biotechnology and Bioengineering, 1990, 36, 460-466.	3.3	108
164	Continuous Production of Penicillin Acylase from Recombinant E. coli in a Membrane Cell Recycle Fermentor. Annals of the New York Academy of Sciences, 1990, 613, 839-845.	3.8	3
165	Plant cell immobilization in a dual hollow fiber bioreactor. Biotechnology Letters, 1989, 3, 139-144.	0.5	13
166	Mass transfer between an eddy of cavity and adjacent flows. Korean Journal of Chemical Engineering, 1989, 6, 212-218.	2.7	0
167	Computer control of cell mass concentration in continuous culture. Automatica, 1989, 25, 243-249.	5.0	11
168	Biotransformation of acrylonitrile to acrylamide using immobilized whole cells of Brevibacterium CH1 in a recycle fed-batch reactor. Biotechnology and Bioengineering, 1989, 34, 380-386.	3.3	28
169	Measurement of KLa by a gassing-in method with oxygen-enriched air. Biotechnology and Bioengineering, 1989, 34, 1147-1157.	3.3	26
170	High-density culture of Escherichia coli carrying recombinant plasmid in a membrane cell recycle fermenter. Enzyme and Microbial Technology, 1989, 11, 49-54.	3.2	23
171	Citric acid production by Aspergillus niger immobilized on polyurethane foam. Applied Microbiology and Biotechnology, 1989, 30, 141.	3.6	56
172	Aerobic fungal cell immobilization in a dual hollow-fiber bioreactor: Continuous production of a citric acid. Biotechnology and Bioengineering, 1988, 32, 205-212.	3.3	47
173	Estimation of oxygen penetration depth in immobilized cells. Applied Microbiology and Biotechnology, 1988, 29, 107-112.	3.6	69
174	Adaptation of Saccharomyces cerevisiae to solvents used in extractive fermentation. Biotechnology Letters, 1988, 10, 261-266.	2.2	13
175	High cell density continuous culture ofEscherichia coli producing penicillin acylase. Biotechnology Letters, 1988, 10, 787-792.	2.2	10
176	Estimation of oxygen penetration depth in immobilized cells. Applied Microbiology and Biotechnology, 1988, 29, 107-112.	3.6	10
177	Dual hollow fiber membrane bioreactor for whole cell enzyme immobilization of Streptomyces griseus with glucose isomerase activity. Journal of Fermentation Technology, 1987, 65, 575-581.	0.5	7
178	Membrane bioreactors: Engineering aspects. Biotechnology Advances, 1987, 5, 129-145.	11.7	23
179	Mass transfer in a three-dimensional net-type turbulence promoter. International Journal of Heat and Mass Transfer, 1987, 30, 1183-1192.	4.8	18
180	Continuous production of acrylamide byBrevibacterium sp. immobilized in a dual hollow fiber bioreactor. Biotechnology Letters, 1987, 9, 237-242.	2.2	24

#	Article	IF	Citations
181	Effect of external laminar channel flow on mass transfer in a cavity. International Journal of Heat and Mass Transfer, 1987, 30, 2137-2149.	4.8	17
182	Glucose oxidation in a dual hollow fiber bioreactor with a silicone tube oxygenator. Biotechnology and Bioengineering, 1987, 29, 552-557.	3.3	18
183	Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnology and Bioengineering, 1987, 29, 1105-1112.	3.3	77
184	Rifamycin B production by Nocardia mediterranei immobilized in a dual hollow fibre bioreactor. Enzyme and Microbial Technology, 1987, 9, 345-349.	3.2	29
185	Dual Hollow-Fiber Bioreactor for Aerobic Whole-Cell Immobilization. ACS Symposium Series, 1986 , , $32-42$.	0.5	11
186	Pressure drop in a packed bed with a liquid of variable viscosity: The case of dextrin hydrolysis by immobilized glucoamylase. Biotechnology and Bioengineering, 1986, 28, 452-455.	3.3	4
187	Flow distribution in the fiber lumen side of a hollow-fiber module. AICHE Journal, 1986, 32, 1937-1947.	3.6	61
188	Effect of internal diffusion on the apparent stability of nonuniformly distributed biocatalysts. Korean Journal of Chemical Engineering, 1986, 3, 39-43.	2.7	5
189	Recycle hollow fiber enzyme reactor with flow swing. Biotechnology and Bioengineering, 1985, 27, 1185-1191.	3.3	19
190	THE EFFECT OF PORE DIFFUSION ON THE SHAPE OF THE PH AND TEMPERATURE PROFILES OF IMMOBILIZED ENZYMES. Chemical Engineering Communications, 1985, 34, 15-25.	2.6	6
191	Effect of inert regions on local mass transfer rate measurements using the limiting diffusion current techniqueâ€"case of Poiseuille type flow. International Journal of Heat and Mass Transfer, 1984, 27, 1922-1925.	4.8	3
192	CSTR type membrane—enzyme reactor with pulsatile inflow and constant outflow. Korean Journal of Chemical Engineering, 1984, 1, 21-25.	2.7	1
193	Theoretical evaluation of ultrafiltration effect on the clearance of hollow fiber artificial kidney. Korean Journal of Chemical Engineering, 1984, 1, 141-145.	2.7	0
194	Variable volume enzyme reactor with ultrafiltration swing: A theoretical study on CSTR case. AICHE Journal, 1983, 29, 645-651.	3.6	15
195	Variable-volume hollow-fiber enzyme reactor with pulsatile flow. AICHE Journal, 1983, 29, 910-914.	3.6	29
196	Experimental study of mass transfer around a turbulence promoter by the limiting current method. International Journal of Heat and Mass Transfer, 1983, 26, 1007-1016.	4.8	45
197	A theoretical study of a membrane/enzyme reactor with sinusoidal ultrafiltration swing Journal of Chemical Engineering of Japan, 1983, 16, 67-71.	0.6	4
198	Numerical calculation of effectiveness factors for the Michaelis-Menten type kinetics with high thiele moduli. AICHE Journal, 1982, 28, 1030-1032.	3.6	13

#	Article	IF	CITATIONS
199	The effect of turbulence promoters on mass transfer—numerical analysis and flow visualization. International Journal of Heat and Mass Transfer, 1982, 25, 1167-1181.	4.8	70
200	Mass transfer in the U-turn of an electrodialyzer. Desalination, 1980, 33, 139-161.	8.2	6
201	Platelet aggregation by laminar shear and Brownian motion. Annals of Biomedical Engineering, 1976, 4, 151-183.	2.5	38
202	Platelet retention in columns packed with glass beads. Annals of Biomedical Engineering, 1974, 2, 361-391.	2.5	11