
Aude Magerus-Chatinet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1132450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genetic landscape of the FAS pathway deficiencies. Biomedical Journal, 2021, 44, 388-399.	3.1	16
2	Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood, 2019, 134, 9-21.	1.4	102
3	Pediatric-onset Evans syndrome: Heterogeneous presentation and high frequency of monogenic disorders including LRBA and CTLA4 mutations. Clinical Immunology, 2018, 188, 52-57.	3.2	53
4	Autoimmune Lymphoproliferative Syndrome-FAS Patients Have an Abnormal Regulatory T Cell (Treg) Phenotype but Display Normal Natural Treg-Suppressive Function on T Cell Proliferation. Frontiers in Immunology, 2018, 9, 718.	4.8	13
5	The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. Journal of Clinical Immunology, 2018, 38, 558-568.	3.8	61
6	In Vitro Evaluation of the Apoptosis Function in Human Activated T Cells. Methods in Molecular Biology, 2017, 1557, 33-40.	0.9	5
7	Evolution of disease activity and biomarkers on and off rapamycin in 28 patients with autoimmune lymphoproliferative syndrome. Haematologica, 2017, 102, e52-e56.	3.5	49
8	Lymphadenopathy driven by TCR-Vγ8Vδ1 T-cell expansion in FAS-related autoimmune lymphoproliferative syndrome. Blood Advances, 2017, 1, 1101-1106.	5.2	3
9	Apoptosis-Related Autoimmune Lymphoproliferative Syndrome. , 2016, , 426-435.		Ο
10	LRBA deficiency with autoimmunity and early onset chronic erosive polyarthritis. Clinical Immunology, 2016, 168, 88-93.	3.2	57
11	X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene. Journal of Allergy and Clinical Immunology, 2016, 138, 1681-1689.e8.	2.9	60
12	RAS-associated lymphoproliferative disease evolves into severe juvenile myelo-monocytic leukemia. Blood, 2014, 123, 1960-1963.	1.4	41
13	Defective anti-polysaccharide response and splenic marginal zone disorganization in ALPS patients. Blood, 2014, 124, 1597-1609.	1.4	48
14	Autoimmune lymphoproliferative syndrome caused by a homozygous null FAS ligand (FASLG) mutation. Journal of Allergy and Clinical Immunology, 2013, 131, 486-490.	2.9	50
15	Somatic loss of heterozygosity, but not haploinsufficiency alone, leads to full-blown autoimmune lymphoproliferative syndrome in 1 of 12 family members with FAS start codon mutation. Clinical Immunology, 2013, 147, 61-68.	3.2	20
16	Diagnosis of autoimmune lymphoproliferative syndrome caused by FAS deficiency in adults. Haematologica, 2013, 98, 389-392.	3.5	25
17	FAS/FAS-L dependent killing of activated human monocytes and macrophages by CD4+CD25â^ responder T cells, but not CD4+CD25+ regulatory T cells. Journal of Autoimmunity, 2012, 38, 29-38.	6.5	24
18	A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood, 2011, 118, 4798-4807.	1.4	153

#	Article	IF	CITATIONS
19	Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. Journal of Clinical Investigation, 2011, 121, 106-112.	8.2	110
20	Autoimmune lymphoproliferative syndrome: a multifactorial disorder. Haematologica, 2010, 95, 1805-1807.	3.5	35
21	Expression of the HLA-C2-specific activating killer-cell Ig-like receptor KIR2DS1 on NK and T cells. Clinical Immunology, 2010, 135, 26-32.	3.2	19
22	FAS-L, IL-10, and double-negative CD4â^'CD8â^' TCR α/β+ T cells are reliable markers of autoimmune lymphoproliferative syndrome (ALPS) associated with FAS loss of function. Blood, 2009, 113, 3027-3030.	1.4	134
23	Human TCR α/β+ CD4â^'CD8â^' Double-Negative T Cells in Patients with Autoimmune Lymphoproliferative Syndrome Express Restricted Vβ TCR Diversity and Are Clonally Related to CD8+ T Cells. Journal of Immunology, 2008, 181, 440-448.	0.8	70
24	Galactosyl ceramide expressed on dendritic cells can mediate HIV-1 transfer from monocyte derived denderitic cells to autologous T cells. Virology, 2007, 362, 67-74.	2.4	66
25	HIV-1-infected Blood Mononuclear Cells Form an Integrin- and Agrin-dependent Viral Synapse to Induce Efficient HIV-1 Transcytosis across Epithelial Cell Monolayer. Molecular Biology of the Cell, 2005, 16, 4267-4279.	2.1	111