Ilyas Unlu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11324487/publications.pdf

Version: 2024-02-01

10	134	7	10
papers	citations	h-index	g-index
10	10	10	212
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Alkynyl Linkers as a Design Tool to Gain Control over the Self-Assembly of Meso-Substituted Porphyrins on HOPG. Langmuir, 2020, 36, 4897-4907.	3.5	4
2	A low-cost and high-precision scanning electrochemical microscope built with open source tools. HardwareX, 2019, 6, e00082.	2.2	7
3	Design, Synthesis, and Evaluation of CF ₃ AuCNR Precursors for Focused Electron Beam-Induced Deposition of Gold. ACS Applied Materials & Enterfaces, 2019, 11, 11976-11987.	8.0	9
4	Electron induced surface reactions of (Î- ⁵ 56-(Î- ⁵ 6-(Sup>6-(Sup)56-(Sup)6-	2.8	21
5	Individually grown cobalt nanowires as magnetic force microscopy probes. Applied Physics Letters, 2018, 112, 092401.	3.3	10
6	Low energy electron-induced decomposition of $(\hat{l}\cdot sup>5-5c)$ Fe(CO) $(\hat{l}\cdot sup>5c/sup>-Cp)$ Fe(CO) $(\hat{l}\cdot sup>5c/sup>-6c)$ Fe(CO) $(\hat{l}\cdot sup>5c/sup>-6c)$ Focused electron beam induced deposition of alloy structures. Physical Chemistry Chemical Physics, 2018, 20, 5644-5656.	2.8	11
7	Electron Induced Surface Reactions of HFeCo ₃ (CO) ₁₂ , a Bimetallic Precursor for Focused Electron Beam Induced Deposition (FEBID). Journal of Physical Chemistry C, 2018, 122, 2648-2660.	3.1	22
8	Multifunctional metal oxide nanoparticle decorated polypropylene knitted swatches. Journal of Materials Science, 2018, 53, 1514-1526.	3.7	5
9	Comparing postdeposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition. Beilstein Journal of Nanotechnology, 2017, 8, 2410-2424.	2.8	17
10	Photocatalytic Activity and Fluorescence of Gold/Zinc Oxide Nanoparticles Formed by Dithiol Linking. Langmuir, 2015, 31, 8718-8725.	3.5	28