Qin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11323815/publications.pdf

Version: 2024-02-01

430874 713466 2,202 21 18 21 citations h-index g-index papers 22 22 22 4054 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Incorporation of free halide ions stabilizes metal–organic frameworks (MOFs) against pore collapse and renders large-pore Zr-MOFs functional for water harvesting. Journal of Materials Chemistry A, 2022, 10, 6442-6447.	10.3	19
2	Review on the exploration of condensed carbon formation mechanism in detonation products. AIP Advances, 2020, 10, 050701.	1.3	11
3	Monoatomic Platinum-Anchored Metallic MoS ₂ : Correlation between Surface Dopant and Hydrogen Evolution. Journal of Physical Chemistry Letters, 2019, 10, 6081-6087.	4.6	53
4	Atomically Intercalating Tin Ions into the Interlayer of Molybdenum Oxide Nanobelt toward Long-Cycling Lithium Battery. Journal of Physical Chemistry Letters, 2018, 9, 817-824.	4.6	39
5	In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Research, 2018, 11, 2217-2228.	10.4	108
6	2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220, 379-385.	20.2	231
7	Engineering interfacial charge-transfer by phase transition realizing enhanced photocatalytic hydrogen evolution activity. Inorganic Chemistry Frontiers, 2017, 4, 663-667.	6.0	25
8	Synthesis of Ni ₉ S ₈ /MoS ₂ heterocatalyst for Enhanced Hydrogen Evolution Reaction. Langmuir, 2017, 33, 5148-5153.	3.5	39
9	Electron-Doped 1T-MoS ₂ via Interface Engineering for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2017, 29, 4738-4744.	6.7	270
10	Vertical 1T-MoS ₂ nanosheets with expanded interlayer spacing edged on a graphene frame for high rate lithium-ion batteries. Nanoscale, 2017, 9, 6975-6983.	5.6	158
11	Stable 1T-MoSe ₂ and Carbon Nanotube Hybridized Flexible Film: Binder-Free and High-Performance Li-lon Anode. ACS Nano, 2017, 11, 6483-6491.	14.6	135
12	Probing Lithium Storage Mechanism of MoO ₂ Nanoflowers with Rich Oxygen-Vacancy Grown on Graphene Sheets. Journal of Physical Chemistry C, 2017, 121, 15589-15596.	3.1	41
13	Metallic 1T-WS ₂ nanoribbons as highly conductive electrodes for supercapacitors. RSC Advances, 2016, 6, 48788-48791.	3.6	72
14	In situ growth of metallic 1T-WS2 nanoislands on single-walled carbon nanotube films for improved electrochemical performance. RSC Advances, 2016, 6, 87919-87925.	3.6	29
15	Inâ€situ Integration of a Metallic 1Tâ€MoS ₂ /CdS Heterostructure as a Means to Promote Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution. ChemCatChem, 2016, 8, 2614-2619.	3.7	98
16	Stable Metallic 1Tâ€WS ₂ Nanoribbons Intercalated with Ammonia Ions: The Correlation between Structure and Electrical/Optical Properties. Advanced Materials, 2015, 27, 4837-4844.	21.0	207
17	Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS ₂ : Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution. Small, 2015, 11, 5556-5564.	10.0	508
18	Ultrathin carbon layer coated MoO ₂ nanoparticles for high-performance near-infrared photothermal cancer therapy. Chemical Communications, 2015, 51, 10054-10057.	4.1	51

#	Article	IF	CITATIONS
19	Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochimica Acta, 2015, 174, 8-14.	5.2	57
20	Stable metallic 1T-WS2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Research, 2015, 8, 3982-3991.	10.4	50
21	The influence of diamond–graphite ratio on the calculation of detonation performance in VLWR. Journal of Energetic Materials, 0, , 1-26.	2.0	0