List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1132253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid Gene Evolution in an Ancient Post-transcriptional and Translational Regulatory System Compensates for Meiotic X Chromosomal Inactivation. Molecular Biology and Evolution, 2022, 39, .	8.9	3
2	Crystal structure and functional properties of the human CCR4-CAF1 deadenylase complex. Nucleic Acids Research, 2021, 49, 6489-6510.	14.5	16
3	4EHP and GIGYF1/2 Mediate Translation-Coupled Messenger RNA Decay. Cell Reports, 2020, 33, 108262.	6.4	41
4	4E-T-bound mRNAs are stored in a silenced and deadenylated form. Genes and Development, 2020, 34, 847-860.	5.9	39
5	A low-complexity region in human XRN1 directly recruits deadenylation and decapping factors in 5′–3′ messenger RNA decay. Nucleic Acids Research, 2019, 47, 9282-9295.	14.5	26
6	Molecular basis for GIGYF–Me31B complex assembly in 4EHP-mediated translational repression. Genes and Development, 2019, 33, 1355-1360.	5.9	21
7	A conserved CAF40-binding motif in metazoan NOT4 mediates association with the CCR4–NOT complex. Genes and Development, 2019, 33, 236-252.	5.9	30
8	Direct role for the Drosophila GIGYF protein in 4EHP-mediated mRNA repression. Nucleic Acids Research, 2019, 47, 7035-7048.	14.5	21
9	Drosophila Bag-of-marbles directly interacts with the CAF40 subunit of the CCR4–NOT complex to elicit repression of mRNA targets. Rna, 2018, 24, 381-395.	3.5	35
10	Structural and biochemical analysis of a NOT1 MIF4G-like domain of the CCR4-NOT complex. Journal of Structural Biology, 2018, 204, 388-395.	2.8	14
11	Structural motifs in eIF4G and 4E-BPs modulate their binding to eIF4E to regulate translation in yeast. Nucleic Acids Research, 2018, 46, 6893-6908.	14.5	27
12	A CAF40-binding motif facilitates recruitment of the CCR4-NOT complex to mRNAs targeted by Drosophila Roquin. Nature Communications, 2017, 8, 14307.	12.8	71
13	GIGYF1/2 proteins use auxiliary sequences to selectively bind to 4EHP and repress target mRNA expression. Genes and Development, 2017, 31, 1147-1161.	5.9	67
14	mi <scp>RISC</scp> and the <scp>CCR</scp> 4– <scp>NOT</scp> complex silence <scp>mRNA</scp> targets independently of 43S ribosomal scanning. EMBO Journal, 2016, 35, 1186-1203.	7.8	64
15	Structure of the Dcp2–Dcp1 mRNA-decapping complex in the activated conformation. Nature Structural and Molecular Biology, 2016, 23, 574-579.	8.2	45
16	The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation. Molecular Cell, 2016, 64, 467-479.	9.7	91
17	Distinct modes of recruitment of the <scp>CCR</scp> 4– <scp>NOT</scp> complex by <i>Drosophila</i> and vertebrate Nanos. EMBO Journal, 2016, 35, 974-990.	7.8	56
18	Molecular Architecture of 4E-BP Translational Inhibitors Bound to eIF4E. Molecular Cell, 2015, 57, 1074-1087.	9.7	130

#	Article	IF	CITATIONS
19	Towards a molecular understanding of microRNA-mediated gene silencing. Nature Reviews Genetics, 2015, 16, 421-433.	16.3	1,508
20	Breakers and blockers—miRNAs at work. Science, 2015, 349, 380-382.	12.6	54
21	Mextli proteins use both canonical bipartite and novel tripartite binding modes to form elF4E complexes that display differential sensitivity to 4E-BP regulation. Genes and Development, 2015, 29, 1835-1849.	5.9	19
22	4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation. Nature Communications, 2014, 5, 4790.	12.8	63
23	Structural basis for the Nanos-mediated recruitment of the CCR4–NOT complex and translational repression. Genes and Development, 2014, 28, 888-901.	5.9	93
24	The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Research, 2014, 42, 5217-5233.	14.5	93
25	A DDX6-CNOT1 Complex and W-Binding Pockets in CNOT9 Reveal Direct Links between miRNA Target Recognition and Silencing. Molecular Cell, 2014, 54, 737-750.	9.7	242
26	An asymmetric PAN3 dimer recruits a single PAN2 exonuclease to mediate mRNA deadenylation and decay. Nature Structural and Molecular Biology, 2014, 21, 599-608.	8.2	40
27	Making sense of nonsense. Nature Structural and Molecular Biology, 2013, 20, 651-653.	8.2	10
28	The Role of GW182 Proteins in miRNA-Mediated Gene Silencing. Advances in Experimental Medicine and Biology, 2013, 768, 147-163.	1.6	105
29	Structure of the PAN3 Pseudokinase Reveals the Basis for Interactions with the PAN2 Deadenylase and the GW182 Proteins. Molecular Cell, 2013, 51, 360-373.	9.7	93
30	GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation. EMBO Journal, 2013, 32, 1052-1065.	7.8	101
31	A role for eIF4All in microRNA–mediated mRNA silencing. Nature Structural and Molecular Biology, 2013, 20, 543-545.	8.2	7
32	Structure and assembly of the NOT module of the human CCR4–NOT complex. Nature Structural and Molecular Biology, 2013, 20, 1289-1297.	8.2	101
33	An unusual arrangement of two 14-3-3-like domains in the SMG5–SMG7 heterodimer is required for efficient nonsense-mediated mRNA decay. Genes and Development, 2013, 27, 211-225.	5.9	76
34	The SMG5–SMG7 heterodimer directly recruits the CCR4–NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes and Development, 2013, 27, 2125-2138.	5.9	172
35	The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes and Development, 2013, 27, 2628-2641.	5.9	166
36	The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Research, 2013, 41, 978-994.	14.5	102

#	Article	IF	CITATIONS
37	miRISC recruits decapping factors to miRNA targets to enhance their degradation. Nucleic Acids Research, 2013, 41, 8692-8705.	14.5	69
38	NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain. RNA Biology, 2013, 10, 228-244.	3.1	97
39	The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4–NOT deadenylase complex. Nucleic Acids Research, 2012, 40, 11058-11072.	14.5	110
40	The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Nucleic Acids Research, 2012, 40, 5651-5665.	14.5	50
41	A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nature Structural and Molecular Biology, 2012, 19, 1324-1331.	8.2	144
42	A Molecular Link between miRISCs and Deadenylases Provides New Insight into the Mechanism of Gene Silencing by MicroRNAs. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012328-a012328.	5.5	47
43	The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO Journal, 2012, 31, 279-290.	7.8	103
44	Elucidating the temporal order of silencing. EMBO Reports, 2012, 13, 662-663.	4.5	41
45	GW182 Proteins Directly Recruit Cytoplasmic Deadenylase Complexes to miRNA Targets. Molecular Cell, 2011, 44, 120-133.	9.7	324
46	Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics, 2011, 12, 99-110.	16.3	2,009
47	CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes and Development, 2011, 25, 1955-1967.	5.9	84
48	Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10466-10471.	7.1	113
49	Structure-function studies of nucleocytoplasmic transport of retroviral genomic RNA by mRNA export factor TAP. Nature Structural and Molecular Biology, 2011, 18, 990-998.	8.2	47
50	The C-terminal α–α superhelix of Pat is required for mRNA decapping in metazoa. EMBO Journal, 2010, 29, 2368-2380.	7.8	50
51	Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. EMBO Journal, 2010, 29, 4146-4160.	7.8	90
52	Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Reports, 2010, 11, 522-527.	4.5	106
53	Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Nature Reviews Molecular Cell Biology, 2010, 11, 379-384.	37.0	78
54	HPat provides a link between deadenylation and decapping in metazoa. Journal of Cell Biology, 2010, 189, 289-302.	5.2	71

#	Article	IF	CITATIONS
55	SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay. Genes and Development, 2010, 24, 2440-2450.	5.9	63
56	Deadenylation is a widespread effect of miRNA regulation. Rna, 2009, 15, 21-32.	3.5	345
57	The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Research, 2009, 37, 2974-2983.	14.5	46
58	The Silencing Domain of GW182 Interacts with PABPC1 To Promote Translational Repression and Degradation of MicroRNA Targets and Is Required for Target Release. Molecular and Cellular Biology, 2009, 29, 6220-6231.	2.3	144
59	DCP1 forms asymmetric trimers to assemble into active mRNA decapping complexes in metazoa. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21591-21596.	7.1	60
60	A C-terminal silencing domain in GW182 is essential for miRNA function. Rna, 2009, 15, 1067-1077.	3.5	101
61	The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. Rna, 2009, 15, 1059-1066.	3.5	129
62	The GW182 protein family in animal cells: New insights into domains required for miRNA-mediated gene silencing. Rna, 2009, 15, 1433-1442.	3.5	168
63	Genome-Wide Identification of Alternative Splice Forms Down-Regulated by Nonsense-Mediated mRNA Decay in Drosophila. PLoS Genetics, 2009, 5, e1000525.	3.5	87
64	Nonsense-Mediated mRNA Decay Effectors Are Essential for Zebrafish Embryonic Development and Survival. Molecular and Cellular Biology, 2009, 29, 3517-3528.	2.3	169
65	Nucleus and gene expression. Current Opinion in Cell Biology, 2009, 21, 331-334.	5.4	Ο
66	Freedom versus constraint in protein function. Nature Reviews Molecular Cell Biology, 2009, 10, 372-372.	37.0	2
67	Structural Basis for the Mutually Exclusive Anchoring of P Body Components EDC3 and Tral to the DEAD Box Protein DDX6/Me31B. Molecular Cell, 2009, 33, 661-668.	9.7	108
68	GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nature Structural and Molecular Biology, 2008, 15, 346-353.	8.2	361
69	Getting to the Root of miRNA-Mediated Gene Silencing. Cell, 2008, 132, 9-14.	28.9	932
70	The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. Rna, 2008, 14, 1991-1998.	3.5	30
71	Similar Modes of Interaction Enable Trailer Hitch and EDC3 To Associate with DCP1 and Me31B in Distinct Protein Complexes. Molecular and Cellular Biology, 2008, 28, 6695-6708.	2.3	72
72	SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. Rna, 2008, 14, 2609-2617.	3.5	274

#	Article	IF	CITATIONS
73	Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes and Development, 2007, 21, 2558-2570.	5.9	247
74	A Divergent Sm Fold in EDC3 Proteins Mediates DCP1 Binding and P-Body Targeting. Molecular and Cellular Biology, 2007, 27, 8600-8611.	2.3	66
75	mRNA quality control: An ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Letters, 2007, 581, 2845-2853.	2.8	178
76	P-Body Formation Is a Consequence, Not the Cause, of RNA-Mediated Gene Silencing. Molecular and Cellular Biology, 2007, 27, 3970-3981.	2.3	598
77	P bodies: at the crossroads of post-transcriptional pathways. Nature Reviews Molecular Cell Biology, 2007, 8, 9-22.	37.0	853
78	A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO Journal, 2007, 26, 1591-1601.	7.8	197
79	mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes and Development, 2006, 20, 1885-1898.	5.9	824
80	A Tiny Helper Lightens the Maternal Load. Cell, 2006, 124, 1117-1118.	28.9	4
81	MicroRNAs Silence Gene Expression by Repressing Protein Expression and/or by Promoting mRNA Decay. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 523-530.	1.1	217
82	Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO Journal, 2006, 25, 5117-5125.	7.8	169
83	Nonsense-mediated mRNA decay: target genes and functional diversification of effectors. Trends in Biochemical Sciences, 2006, 31, 639-646.	7.5	125
84	Genome-Wide Analysis of mRNAs Regulated by Drosha and Argonaute Proteins in Drosophila melanogaster. Molecular and Cellular Biology, 2006, 26, 2965-2975.	2.3	125
85	Quality control of gene expression: a stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes and Development, 2006, 20, 391-398.	5.9	83
86	Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. Rna, 2005, 11, 459-469.	3.5	295
87	The structure of the flock house virus B2 protein, a viral suppressor of RNA interference, shows a novel mode of doubleâ€stranded RNA recognition. EMBO Reports, 2005, 6, 1149-1155.	4.5	120
88	Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature, 2005, 434, 724-731.	27.8	85
89	Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Current Opinion in Cell Biology, 2005, 17, 316-325.	5.4	412
90	A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. Rna, 2005, 11, 1640-1647.	3.5	398

#	Article	IF	CITATIONS
91	Complex genomic rearrangements lead to novel primate gene function. Genome Research, 2005, 15, 343-351.	5.5	104
92	Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. Rna, 2005, 11, 1530-1544.	3.5	226
93	SMG7 Is a 14-3-3-like Adaptor in the Nonsense-Mediated mRNA Decay Pathway. Molecular Cell, 2005, 17, 537-547.	9.7	198
94	RNAi: Finding the elusive endonuclease. Rna, 2004, 10, 1675-1679.	3.5	39
95	RanBP2/Nup358 Provides a Major Binding Site for NXF1-p15 Dimers at the Nuclear Pore Complex and Functions in Nuclear mRNA Export. Molecular and Cellular Biology, 2004, 24, 1155-1167.	2.3	98
96	Molecular insights into the interaction of PYM with the Mago–Y14 core of the exon junction complex. EMBO Reports, 2004, 5, 304-310.	4.5	81
97	Directing mRNA export. Nature Structural and Molecular Biology, 2004, 11, 210-212.	8.2	19
98	The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nature Structural and Molecular Biology, 2004, 11, 330-337.	8.2	168
99	Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nature Structural and Molecular Biology, 2004, 11, 558-566.	8.2	190
100	Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nature Structural and Molecular Biology, 2004, 11, 576-577.	8.2	304
101	The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α. Nature Structural and Molecular Biology, 2004, 11, 1001-1007.	8.2	263
102	An elF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature, 2004, 427, 753-757.	27.8	327
103	Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature, 2004, 429, 575-578.	27.8	208
104	Letter to the Editor: NMR Assignment of the Drosophila Argonaute2 PAZ Domain. Journal of Biomolecular NMR, 2004, 29, 421-422.	2.8	3
105	SMG7 Acts as a Molecular Link between mRNA Surveillance and mRNA Decay. Molecular Cell, 2004, 16, 587-596.	9.7	254
106	Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO Journal, 2003, 22, 2472-2483.	7.8	140
107	Nonsense-mediated mRNA decay in Drosophila:at the intersection of the yeast and mammalian pathways. EMBO Journal, 2003, 22, 3960-3970.	7.8	249
108	The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends in Cell Biology, 2003, 13, 319-327.	7.9	185

#	Article	IF	CITATIONS
109	The PAM domain, a multi-protein complex-associated module with an all-alpha-helix fold. BMC Bioinformatics, 2003, 4, 64.	2.6	15
110	A novel mode of RBD-protein recognition in the Y14–Mago complex. Nature Structural and Molecular Biology, 2003, 10, 433-439.	8.2	150
111	Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature, 2003, 426, 465-469.	27.8	405
112	An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nature Biotechnology, 2003, 21, 89-92.	17.5	181
113	REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export. Journal of Cell Biology, 2002, 159, 579-588.	5.2	190
114	Nuclear Export of mRNA by TAP/NXF1 Requires Two Nucleoporin-Binding Sites but Not p15. Molecular and Cellular Biology, 2002, 22, 5405-5418.	2.3	87
115	A novel family of nuclear transport receptors mediates the export of messenger RNA to the cytoplasm. European Journal of Cell Biology, 2002, 81, 577-584.	3.6	54
116	Nuclear Export of Messenger RNA. Results and Problems in Cell Differentiation, 2002, 35, 133-150.	0.7	23
117	Structural Basis for the Recognition of a Nucleoporin FG Repeat by the NTF2-like Domain of the TAP/p15 mRNA Nuclear Export Factor. Molecular Cell, 2001, 8, 645-656.	9.7	211
118	The protein Mago provides a link between splicing and mRNA localization. EMBO Reports, 2001, 2, 1119-1124.	4.5	157
119	The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO Journal, 2001, 20, 4987-4997.	7.8	690
120	Herpes simplex virus ICP27 protein provides viral mRNAs with access to the cellular mRNA export pathway. EMBO Journal, 2001, 20, 5769-5778.	7.8	141
121	NXF5, a novel member of the nuclear RNA export factor family, is lost in a male patient with a syndromic form of mental retardation. Current Biology, 2001, 11, 1381-1391.	3.9	67
122	The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Current Biology, 2001, 11, 1716-1721.	3.9	213
123	Nucleocytoplasmic transport enters the atomic age. Current Opinion in Cell Biology, 2001, 13, 310-319.	5.4	245
124	Overexpression of TAP/p15 Heterodimers Bypasses Nuclear Retention and Stimulates Nuclear mRNA Export. Journal of Biological Chemistry, 2001, 276, 20536-20543.	3.4	123
125	REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1030-1035.	7.1	156
126	Prediction of structural domains of TAP reveals details of its interaction with p15 and nucleoporins. EMBO Reports, 2000, 1, 53-58.	4.5	81

#	Article	IF	CITATIONS
127	The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO Journal, 2000, 19, 6860-6869.	7.8	802
128	The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. Rna, 2000, 6, 136-158.	3.5	298
129	REF, an evolutionarily conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. Rna, 2000, 6, 638-650.	3.5	331
130	Rous Sarcoma Virus DR Posttranscriptional Elements Use a Novel RNA Export Pathway. Journal of Virology, 2000, 74, 9507-9514.	3.4	64
131	TAP (NXF1) Belongs to a Multigene Family of Putative RNA Export Factors with a Conserved Modular Architecture. Molecular and Cellular Biology, 2000, 20, 8996-9008.	2.3	210
132	Vesicular Stomatitis Virus Matrix Protein Inhibits Host Cell Gene Expression by Targeting the Nucleoporin Nup98. Molecular Cell, 2000, 6, 1243-1252.	9.7	226
133	Coordination of tRNA nuclear export with processing of tRNA. Rna, 1999, 5, 539-549.	3.5	123
134	CRM1-mediated Recycling of Snurportin 1 to the Cytoplasm. Journal of Cell Biology, 1999, 145, 255-264.	5.2	158
135	Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO Journal, 1999, 18, 4332-4347.	7.8	244
136	Identification of a tRNA-Specific Nuclear Export Receptor. Molecular Cell, 1998, 1, 359-369.	9.7	342
137	TAP, the Human Homolog of Mex67p, Mediates CTE-Dependent RNA Export from the Nucleus. Molecular Cell, 1998, 1, 649-659.	9.7	532
138	A Novel Class of RanGTP Binding Proteins. Journal of Cell Biology, 1997, 138, 65-80.	5.2	398
139	A Role for the M9 Transport Signal of hnRNP A1 in mRNA Nuclear Export. Journal of Cell Biology, 1997, 137, 27-35.	5.2	234
140	Participation of the nuclear cap binding complex in pre-mRNA 3' processing. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11893-11898.	7.1	201
141	The simian retrovirus-1 constitutive transport element, unlike the HIV-1 RRE, uses factors required for cellular mRNA export. Current Biology, 1997, 7, 619-628.	3.9	170
142	An immersion in nucleocytoplasmic transport at the Garda lake. Trends in Cell Biology, 1997, 7, 81-83.	7.9	3
143	The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO Journal, 1997, 16, 6535-6547.	7.8	557
144	Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex. EMBO Journal, 1997, 16, 1153-1163.	7.8	338

#	Article	IF	CITATIONS
145	A nuclear cap-binding complex binds Balbiani ring pre-mRNA cotranscriptionally and accompanies the ribonucleoprotein particle during nuclear export Journal of Cell Biology, 1996, 133, 5-14.	5.2	220
146	Importin Provides a Link between Nuclear Protein Import and U snRNA Export. Cell, 1996, 87, 21-32.	28.9	194
147	ROLES OF IMPORTIN IN NUCLEOCYTOPLASMIC TRANSPORT. Biochemical Society Transactions, 1996, 24, 627S-627S.	3.4	0
148	Nuclear transport of uracil-rich small nuclear ribonucleoprotein particles. Membrane Protein Transport, 1995, 2, 123-159.	0.2	0
149	A cap-binding protein complex mediating U snRNA export. Nature, 1995, 376, 709-712.	27.8	320
150	RNA Export. Cell, 1995, 81, 153-159.	28.9	211
151	A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell, 1994, 78, 657-668.	28.9	493
152	Transport of RNA between nucleus and cytoplasm. Seminars in Cell Biology, 1992, 3, 279-288.	3.4	89
153	Highly preferential nucleation of histone H1 assembly on scaffold-associated regions. Journal of Molecular Biology, 1989, 210, 573-585.	4.2	172
154	Specific inhibition of DNA Binding to nuclear scaffolds and histone H1 by distamycin. Journal of Molecular Biology, 1989, 210, 587-599.	4.2	148
155	Interaction of DNA with nuclear scaffolds in vitro. Journal of Molecular Biology, 1988, 200, 111-125.	4.2	151