

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11319685/publications.pdf Version: 2024-02-01

DRIADSEN

#	Article	IF	CITATIONS
1	Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature, 1991, 349, 438-440.	13.7	854
2	Recognition of UGA as a selenocysteine codon in Type I deiodinase requires sequences in the 3′ untranslated region. Nature, 1991, 353, 273-276.	13.7	619
3	Maternal and Fetal Thyroid Function. New England Journal of Medicine, 1994, 331, 1072-1078.	13.9	613
4	Relationships between Circulating and Intracellular Thyroid Hormones: Physiological and Clinical Implications*. Endocrine Reviews, 1981, 2, 87-102.	8.9	548
5	Identification of a thyroid hormone receptor that is pituitary-specific. Science, 1989, 244, 76-79.	6.0	494
6	Severe Hypothyroidism Caused by Type 3 Iodothyronine Deiodinase in Infantile Hemangiomas. New England Journal of Medicine, 2000, 343, 185-189.	13.9	486
7	Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature, 1989, 337, 659-661.	13.7	440
8	Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature, 1983, 305, 712-713.	13.7	381
9	Increased Need for Thyroxine during Pregnancy in Women with Primary Hypothyroidism. New England Journal of Medicine, 1990, 323, 91-96.	13.9	356
10	Screening for congenital hypothyroidism: Results of screening one million North American infants. Journal of Pediatrics, 1979, 94, 700-705.	0.9	347
11	Thyroid-Pituitary Interaction. New England Journal of Medicine, 1982, 306, 23-32.	13.9	337
12	An Analysis of the Sources and Quantity of 3,5,3′-Triiodothyronine Specifically Bound to Nuclear Receptors in Rat Cerebral Cortex and Cerebellum*. Endocrinology, 1982, 110, 367-375.	1.4	327
13	Levothyroxine Therapy in Patients with Thyroid Disease. Annals of Internal Medicine, 1993, 119, 492.	2.0	286
14	The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. Journal of Clinical Investigation, 2001, 108, 1379-1385.	3.9	271
15	Regional Distribution of Type 2 Thyroxine Deiodinase Messenger Ribonucleic Acid in Rat Hypothalamus and Pituitary and Its Regulation by Thyroid Hormone*. Endocrinology, 1997, 138, 3359-3368.	1.4	267
16	Molecular biological and biochemical characterization of the human type 2 selenodeiodinase Endocrinology, 1996, 137, 3308-3315.	1.4	241
17	Mutations of the Rat Growth Hormone Promoter which Increase and Decrease Response to Thyroid Hormone Define a Consensus Thyroid Hormone Response Element. Molecular Endocrinology, 1989, 3, 1996-2004.	3.7	239
18	Kinetic evidence suggesting two mechanisms for iodothyronine 5'-deiodination in rat cerebral cortex Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 5080-5084.	3.3	222

#	Article	IF	CITATIONS
19	Isolation of a cDNA clone encoding a biologically active thyroid hormone receptor Proceedings of the United States of America, 1988, 85, 5031-5035.	3.3	222
20	Thyroid Hormone Regulation of Gene Expression. Annual Review of Physiology, 1991, 53, 17-35.	5.6	210
21	THYROXINE 5′-DEIODINASE ACTIVITY IN BROWN ADIPOSE TISSUE. Endocrinology, 1983, 112, 1153-1155.	1.4	208
22	Pituitary nuclear 3,5,3'-triiodothyronine and thyrotropin secretion: an explanation for the effect of thyroxine. Science, 1977, 198, 617-620.	6.0	205
23	Cerebral cortex responds rapidly to thyroid hormones. Science, 1981, 214, 571-573.	6.0	203
24	Contributions of Plasma Triiodothyronine and Local Thyroxine Monodeiodination to Triiodothyronine to Nuclear Triiodothyronine Receptor Saturation in Pituitary, Liver, and Kidney of Hypothyroid Rats. Journal of Clinical Investigation, 1978, 61, 1247-1259.	3.9	197
25	Direct immunoassay of triiodothyronine in human serum. Journal of Clinical Investigation, 1972, 51, 1939-1949.	3.9	192
26	Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5670-5674.	3.3	190
27	The Contribution of Local Tissue Thyroxine Monodeiodination to the Nuclear 3,5,3′- Triiodothyronine in Pituitary, Liver, and Kidney of Euthyroid Rats*. Endocrinology, 1978, 103, 1196-1207.	1.4	189
28	Potential of brown adipose tissue type II thyroxine 5'-deiodinase as a local and systemic source of triiodothyronine in rats Journal of Clinical Investigation, 1985, 76, 2296-2305.	3.9	189
29	Evidence for Two Pathways of Iodothyronine 5′-Deiodination in Rat Pituitary That Differ in Kinetics, Propylthiouracil Sensitivity, and Response to Hypothyroidism. Journal of Clinical Investigation, 1983, 71, 992-1002.	3.9	178
30	Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected l² type thyroid hormone receptor. Journal of Biological Chemistry, 1989, 264, 178-182.	1.6	175
31	Type 2 iodothyronine deiodinase is highly expressed in human thyroid Journal of Clinical Investigation, 1996, 98, 962-968.	3.9	174
32	Type 3 lodothyronine deiodinase: cloning, in vitro expression, and functional analysis of the placental selenoenzyme Journal of Clinical Investigation, 1995, 96, 2421-2430.	3.9	173
33	Prevalence of abnormal thyroid function test results in patients with acute medical illnesses. American Journal of Medicine, 1982, 72, 9-16.	0.6	169
34	Regional Expression of the Type 3 Iodothyronine Deiodinase Messenger Ribonucleic Acid in the Rat Central Nervous System and Its Regulation by Thyroid Hormone*. Endocrinology, 1999, 140, 784-790.	1.4	167
35	Salicylate-induced increases in free triiodothyronine in human serum. Journal of Clinical Investigation, 1972, 51, 1125-1134.	3.9	162
36	Neonatal Thyroid Function after Propylthiouracil Therapy for Maternal Graves' Disease. New England Journal of Medicine, 1981, 304, 525-528.	13.9	160

#	Article	IF	CITATIONS
37	Nutritional and Hormonal Regulation of Thyroid Hormone Deiodinases. Annual Review of Nutrition, 1995, 15, 323-352.	4.3	153
38	Triiodothyronine: Review of recent studies of its physiology and pathophysiology in man. Metabolism: Clinical and Experimental, 1972, 21, 1073-1092.	1.5	152
39	Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14466-14471.	3.3	149
40	Inhibition of intrapituitary thyroxine to 3.5.3'-triiodothyronine conversion prevents the acute suppression of thyrotropin release by thyroxine in hypothyroid rats Journal of Clinical Investigation, 1979, 64, 117-128.	3.9	144
41	Thyroid Dysfunction from Antineoplastic Agents. Journal of the National Cancer Institute, 2011, 103, 1572-1587.	3.0	143
42	Selective Proteolysis of Human Type 2 Deiodinase: A Novel Ubiquitin-Proteasomal Mediated Mechanism for Regulation of Hormone Activation. Molecular Endocrinology, 2000, 14, 1697-1708.	3.7	140
43	Triiodothyronine and Thyroxine in Hyperthyroidism COMPARISON OF THE ACUTE CHANGES DURING THERAPY WITH ANTITHYROID AGENTS. Journal of Clinical Investigation, 1974, 54, 201-208.	3.9	139
44	Triiodothyronine and Thyroxine in the Serum and Thyroid Glands of Iodine-Deficient Rats. Journal of Clinical Investigation, 1973, 52, 2522-2531.	3.9	136
45	Evidence for Two Tissue-specific Pathways for In Vivo Thyroxine 5′-Deiodination in the Rat. Journal of Clinical Investigation, 1982, 69, 1176-1184.	3.9	136
46	Review of Antithyroid Drug Use During Pregnancy and Report of a Case of Aplasia Cutis. Thyroid, 1994, 4, 129-133.	2.4	135
47	Immunoassay of Thyroxine in Unextracted Human Serum. Journal of Clinical Endocrinology and Metabolism, 1973, 37, 177-182.	1.8	134
48	Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO Journal, 1993, 12, 3315-22.	3.5	132
49	A Novel Retinoid X Receptor-Independent Thyroid Hormone Response Element Is Present in the Human Type 1 Deiodinase Gene. Molecular and Cellular Biology, 1995, 15, 5100-5112.	1.1	129
50	Selenocysteine confers the biochemical properties characteristic of the type I iodothyronine deiodinase. Journal of Biological Chemistry, 1991, 266, 14155-8.	1.6	129
51	Rapid Thyroxine to 3,5,3′-Triiodothyronine Conversion and Nuclear 3,5,3′-Triiodothyronine Binding in Rat Cerebral Cortex and Cerebellum. Journal of Clinical Investigation, 1980, 65, 935-938.	3.9	127
52	Effect of Acute Exposure to Cold on the Activity of the Hypothalamic-Pituitary-Thyroid System. Endocrinology, 1975, 97, 1185-1195.	1.4	124
53	Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected beta type thyroid hormone receptor. Journal of Biological Chemistry, 1989, 264, 178-82.	1.6	124
54	Relation of severity of maternal hypothyroidism to cognitive development of offspring. Journal of Medical Screening, 2001, 8, 18-20.	1.1	120

#	Article	IF	CITATIONS
55	Thyroid Hormone Promotes Postnatal Rat Pancreatic β-Cell Development and Glucose-Responsive Insulin Secretion Through MAFA. Diabetes, 2013, 62, 1569-1580.	0.3	120
56	Comparison of the Biological Effects of Thyroxine and Triiodothyronine in the Rat*. Endocrinology, 1977, 100, 980-988.	1.4	114
57	The effect of diphenylhydantoin on thyroxine metabolism in man. Journal of Clinical Investigation, 1970, 49, 1266-1279.	3.9	112
58	Acute Posttranscriptional Regulation of Cerebrocortical and Pituitary Iodothyronine 5′-Deiodinases by Thyroid Hormone [*] . Endocrinology, 1984, 114, 998-1004.	1.4	111
59	Serum Triiodothyronine and Thyroxine in the Neonate and the Acute Increases in These Hormones Following Delivery. Journal of Clinical Investigation, 1973, 52, 1195-1199.	3.9	111
60	Distinct Subcellular Localization of Transiently Expressed Types 1 and 2 lodothyronine Deiodinases as Determined by Immunofluorescence Confocal Microscopy. Endocrinology, 2000, 141, 4309-4312.	1.4	110
61	Repression mediates cell-type-specific expression of the rat growth hormone gene Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8283-8287.	3.3	109
62	Thyroid Hormone Regulates Type I Deiodinase Messenger RNA in Rat Liver. Molecular Endocrinology, 1990, 4, 743-748.	3.7	109
63	Substitution of cysteine for selenocysteine in type I iodothyronine deiodinase reduces the catalytic efficiency of the protein but enhances its translation Endocrinology, 1992, 131, 1848-1852.	1.4	109
64	Comparison of Iodothyronine 5′-Deiodinase and Other Thyroid-Hormone-dependent Enzyme Activities in the Cerebral Cortex of Hypothyroid Neonatal Rat. Journal of Clinical Investigation, 1982, 70, 1110-1123.	3.9	108
65	Qualitative and quantitative differences in the pathways of extrathyroidal triiodothyronine generation between euthyroid and hypothyroid rats Journal of Clinical Investigation, 1984, 73, 898-907.	3.9	106
66	Characterization of the 5′-Flanking and 5′-Untranslated Regions of the Cyclic Adenosine 3′,5′-Monophosphate-Responsive Human Type 2 Iodothyronine Deiodinase Gene1. Endocrinology, 2000, 141, 229-237.	1.4	101
67	Correlation of sequential changes in serum thyroglobulin, triiodothyronine, and thyroxine in patients with Graves' disease and subacute thyroiditis. Metabolism: Clinical and Experimental, 1978, 27, 449-460.	1.5	98
68	Substrate-Induced Down-Regulation of Human Type 2 Deiodinase (hD2) Is Mediated through Proteasomal Degradation and Requires Interaction with the Enzyme's Active Center1. Endocrinology, 2000, 141, 1127-1135.	1.4	98
69	Starvation in the rat. II. Effect of age and obesity on protein sparing and fuel metabolism. American Journal of Physiology - Endocrinology and Metabolism, 1980, 239, E277-E277.	1.8	95
70	Type 2 iodothyronine deiodinase in rat pituitary tumor cells is inactivated in proteasomes Journal of Clinical Investigation, 1998, 102, 1895-1899.	3.9	95
71	Multihormonal Regulation of the Human, Rat, and Bovine Growth Hormone Promoters: Differential Effects of 3′,5′-Cyclic Adenosine Monophosphate, Thyroid Hormone, and Glucocorticoids. Molecular Endocrinology, 1988, 2, 792-798.	3.7	94
72	Cloning and in vitro expression of the human selenoprotein, type I iodothyronine deiodinase Journal of Clinical Endocrinology and Metabolism, 1992, 75, 1133-1139.	1.8	92

#	Article	IF	CITATIONS
73	Topological Analysis of the Integral Membrane Protein, Type 1 Iodothyronine Deiodinase (D1). Journal of Biological Chemistry, 1995, 270, 12310-12318.	1.6	91
74	The Human Type 2 Iodothyronine Deiodinase Is a Selenoprotein Highly Expressed in a Mesothelioma Cell Line. Journal of Biological Chemistry, 2001, 276, 30183-30187.	1.6	87
75	The Role of Selenium in Thyroid Hormone Action*. Endocrine Reviews, 1992, 13, 207-219.	8.9	86
76	Sequences required for cell-type specific thyroid hormone regulation of rat growth hormone promoter activity Journal of Biological Chemistry, 1986, 261, 14373-14376.	1.6	85
77	The regional hypothalamic distribution of type II 5′-monodeiodinase in euthyroid and hypothyroid rats. Brain Research, 1987, 420, 194-198.	1.1	84
78	Bioavailability of thyroid hormones from oral replacement preparations. Metabolism: Clinical and Experimental, 1982, 31, 900-905.	1.5	81
79	Triiodothyronine, Thyroxine, and Iodine in Purified Thyroglobulin from Patients with Graves' Disease. Journal of Clinical Investigation, 1977, 59, 1105-1112.	3.9	78
80	Physiological and Pharmacological Influences on Thyroxine to 3,5,3′-Triiodothyronine Conversion and Nuclear 3,5,3′-Triiodothyronine Binding in Rat Anterior Pituitary. Journal of Clinical Investigation, 1979, 64, 1402-1414.	3.9	78
81	Physiological and genetic analyses of inbred mouse strains with a type I iodothyronine 5' deiodinase deficiency Journal of Clinical Investigation, 1993, 92, 1517-1528.	3.9	78
82	Total and Free Triiodothyronine and Thyroxine in Early Infancy. Journal of Clinical Endocrinology and Metabolism, 1974, 39, 263-268.	1.8	77
83	Thyroid Hormone Regulates Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel (HCN2) mRNA in the Rat Heart. Circulation Research, 1999, 85, 498-503.	2.0	76
84	Physiological role and regulation of iodothyronine deiodinases: A 2011 update. Journal of Endocrinological Investigation, 2011, 34, 395-407.	1.8	75
85	Anatomical Distribution of Phenolic and Tyrosyl Ring Iodothyronine Deiodinases in the Nervous System of Normal and Hypothyroid Rats*. Endocrinology, 1981, 109, 397-402.	1.4	74
86	Effects of thyroid-stimulating hormone on adenyl cyclase activity and intermediary metabolism of "cold―thyroid nodules and normal human thyroid tissue. Journal of Clinical Investigation, 1972, 51, 1109-1117.	3.9	74
87	Evidence that Cysteine, not Selenocysteine, is in the Catalytic Site of Type II lodothyronine Deiodinase. Endocrinology, 1991, 129, 550-552.	1.4	73
88	Interrelationships among thyroxine, growth hormone, and the sympathetic nervous system in the regulation of 5'-iodothyronine deiodinase in rat brown adipose tissue Journal of Clinical Investigation, 1986, 77, 1214-1223.	3.9	73
89	Thyroxine (T4) Immunoassay Using Filter Paper Blood Samples for Screening of Neonates for Hypothyroidism. Pediatric Research, 1975, 9, 604-609.	1.1	71
90	Cloning and Expression of the Chicken Type 2 Iodothyronine 5′-Deiodinase. Journal of Biological Chemistry, 1999, 274, 13768-13776.	1.6	70

#	Article	IF	CITATIONS
91	Studies of the Hormonal Regulation of Type 2 5′-lodothyronine Deiodinase Messenger Ribonucleic Acid in Pituitary Tumor Cells Using Semiquantitative Reverse Transcription-Polymerase Chain Reaction**This work was supported by NIH Grant DK-36256 Endocrinology, 1998, 139, 4895-4905.	1.4	69
92	Transcriptional regulation of iodothyronine deiodinases during embryonic development. Molecular and Cellular Endocrinology, 2001, 183, 1-9.	1.6	69
93	Regional physiological adaptation of the central nervous system deiodinases to iodine deficiency. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E54-E61.	1.8	69
94	Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoic acid receptor. The New Biologist, 1989, 1, 329-36.	2.8	69
95	Thyroidal Triiodothyronine and Thyroxine in Graves' Disease: Correlation with Presurgical Treatment, Thyroid Status, and Iodine Content. Journal of Clinical Endocrinology and Metabolism, 1975, 41, 1098-1104.	1.8	68
96	The 3′-Untranslated Region of Human Type 2 Iodothyronine Deiodinase mRNA Contains a Functional Selenocysteine Insertion Sequence Element. Journal of Biological Chemistry, 1998, 273, 33374-33378.	1.6	68
97	Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements Molecular Endocrinology, 1992, 6, 502-514.	3.7	67
98	Familial Autoimmune Thyroiditis: Maternal–Fetal Relationship and the Role of Generalized Autoimmunity. Journal of Clinical Endocrinology and Metabolism, 1973, 37, 265-275.	1.8	66
99	Multiple sequences encoding potential thyroid hormone receptors isolated from mouse skeletal muscle cDNA libraries. Nucleic Acids Research, 1988, 16, 6248-6248.	6.5	66
100	Structural and functional differences in the dio1 gene in mice with inherited type 1 deiodinase deficiency Molecular Endocrinology, 1995, 9, 969-980.	3.7	65
101	Overexpression of Type 2 Iodothyronine Deiodinase in Follicular Carcinoma as a Cause of Low Circulating Free Thyroxine Levels. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 594-598.	1.8	65
102	Effects of Varying the Position of Thyroid Hormone Response Elements within the Rat Growth Hormone Promoter: Implications for Positive and Negative Regulation by 3,5,3′-Triiodothyronine. Molecular Endocrinology, 1991, 5, 542-548.	3.7	64
103	α1- and β-Adrenergic Agents Cause Synergistic Stimulation of the Iodothyronine Deiodinase in Rat Brown Adipocytes*. Endocrinology, 1989, 125, 2502-2509.	1.4	63
104	Thyroid hormone metabolism in primary cultures of fetal rat brain cells. Brain Research, 1985, 327, 1-13.	1.1	62
105	Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Letters, 1994, 344, 143-146.	1.3	62
106	The Human, but Not Rat, dio2 Gene Is Stimulated by Thyroid Transcription Factor-1 (TTF-1). Molecular Endocrinology, 2001, 15, 112-124.	3.7	62
107	Different pathways of iodothyronine 5′-deiodination in rat cerebral cortex. Biochemical and Biophysical Research Communications, 1981, 101, 1297-1304.	1.0	61
108	Acute Deficiency of Thyroxine-Binding Globulin during L-Asparaginase Therapy. New England Journal of Medicine, 1979, 301, 252-253.	13.9	59

#	Article	IF	CITATIONS
109	Revised Nomenclature for Tests of Thyroid Hormones and Thyroid-Related Proteins in Serum Journal of Clinical Endocrinology and Metabolism, 1987, 64, 1089-1094.	1.8	59
110	Type 2 lodothyronine Deiodinase Transgene Expression in the Mouse Heart Causes Cardiac-Specific Thyrotoxicosis1. Endocrinology, 2001, 142, 13-20.	1.4	59
111	Further Characterization of Thyroid Hormone Response Elements in the Human Type 1 lodothyronine Deiodinase Gene ¹ . Endocrinology, 1998, 139, 1156-1163.	1.4	58
112	The Basic Proteins of Cobra Venom. Journal of Biological Chemistry, 1968, 243, 1283-1289.	1.6	57
113	Effect of 3,5,3'-Triiodothyronine (T3) administration on dio1 gene expression and T3 metabolism in normal and type 1 deiodinase-deficient mice Endocrinology, 1995, 136, 4842-4849.	1.4	56
114	Correlation of serum triiodothyronine (T3) and thyroxine (T4) with biologic effects of thyroid hormone replacement in propylthiouracil-treated rats. Metabolism: Clinical and Experimental, 1975, 24, 547-554.	1.5	55
115	Neonatal thyroid function in congenital hypothyroidism. Journal of Pediatrics, 1976, 89, 545-549.	0.9	55
116	Dominant negative inhibition by mutant thyroid hormone receptors is thyroid hormone response element and receptor isoform specific Molecular Endocrinology, 1993, 7, 1319-1330.	3.7	55
117	Structure-Activity Relationships for Thyroid Hormone Deiodination by Mammalian Type I Iodothyronine Deiodinases1. Endocrinology, 1997, 138, 213-219.	1.4	53
118	The Role of Selenocysteine 133 in Catalysis by the Human Type 2 lodothyronine Deiodinase1. Endocrinology, 2000, 141, 4606-4612.	1.4	53
119	Demonstration of Iodide Transport Defect but Normal Iodide Organification in Nonfunctioning Nodules of Human Thyroid Glands. Journal of Clinical Investigation, 1973, 52, 2404-2410.	3.9	53
120	Peripheral Metabolism of Homologous Thyrotropin in Euthyroid and Hypothyroid Rats: Acute Effects of Thyrotropin-Releasing Hormone, Triiodothyronine, and Thyroxine*. Endocrinology, 1978, 102, 1783-1796.	1.4	52
121	Regulation of Thyroxine 5â€2-Deiodinase Activity by 3,5,3â€2-Triiodothyronine in Cultured Rat Anterior Pituitary Cells*. Endocrinology, 1984, 115, 324-329.	1.4	52
122	Characterization of the Promoter of the Rat Sarcoplasmic Endoplasmic Reticulum Ca2+-ATPase 1 Gene and Analysis of Thyroid Hormone Responsiveness. Journal of Biological Chemistry, 1996, 271, 32048-32056.	1.6	52
123	Differential capacity of wild type promoter elements for binding and trans-activation by retinoic acid and thyroid hormone receptors Molecular Endocrinology, 1992, 6, 1527-1537.	3.7	51
124	Sequences required for cell-type specific thyroid hormone regulation of rat growth hormone promoter activity. Journal of Biological Chemistry, 1986, 261, 14373-6.	1.6	50
125	IMMUNOASSAY OF HUMAN TSH USING DRIED BLOOD SAMPLES1. Journal of Clinical Endocrinology and Metabolism, 1976, 42, 987-990.	1.8	46
126	Comparison of thyroxine and 3,3′,5′-triiodothyronine metabolism in rat kidney and liver homogenates. Metabolism: Clinical and Experimental, 1979, 28, 1139-1146.	1.5	46

#	Article	IF	CITATIONS
127	Serum triiodothyronine, thyroxine, and thyrotropin during hyperthyroid, hypothyroid, and recovery phases of subacute nonsuppurative thyroiditis. Metabolism: Clinical and Experimental, 1974, 23, 467-471.	1.5	45
128	Triiodothyronine and thyroxine content of desiccated thyroid tablets. Metabolism: Clinical and Experimental, 1977, 26, 1213-1218.	1.5	43
129	Isolation of labeled triiodothyronine from serum using affinity chromatography: Application to the estimation of the peripheral T4 to T3 conversion in rats. Metabolism: Clinical and Experimental, 1978, 27, 303-313.	1.5	42
130	Technical aspects of the estimation of triiodothyronine in human serum: Evidence of conversion of thyroxine to triiodothyronine during assay. Metabolism: Clinical and Experimental, 1971, 20, 609-624.	1.5	39
131	Oral Thyroxine: Variation in Biologic Action and Tablet Content. Annals of Internal Medicine, 1984, 100, 641.	2.0	39
132	Plasma T4 and T3 levels in naturally metamorphosing Eurycea bislineata (Amphibia; Plethodontidae). General and Comparative Endocrinology, 1986, 61, 153-163.	0.8	39
133	Mutation of the Secys residue 266 in human type 2 selenodeiodinase alters 75Se incorporation without affecting its biochemical properties. Biochimie, 1999, 81, 535-538.	1.3	39
134	Thyroxine to 3,5,3′-triiodothyronine conversion by rat anterior pituitary and liver. Metabolism: Clinical and Experimental, 1978, 27, 1601-1607.	1.5	37
135	The Role of 3,3′,5′-Triiodothyronine in the Regulation of Type II Iodothyronine 5′-Deiodinase in the Rat Cerebral Cortex*. Endocrinology, 1986, 119, 2186-2192.	1.4	37
136	Maternal Thyroxine and Congenital Hypothyroidism. New England Journal of Medicine, 1989, 321, 44-46.	13.9	35
137	Biochemical Observations in Functioning Human Thyroid Adenomas1. Journal of Clinical Endocrinology and Metabolism, 1973, 36, 1009-1018.	1.8	34
138	DARPP-32 and CREB are present in type 2 iodothyronine deiodinase-producing tanycytes: implications for the regulation of type 2 deiodinase activity. Brain Research, 2000, 862, 154-161.	1.1	34
139	Thyroid function studies in preterm infants recovering from the respiratory distress syndrome. Journal of Pediatrics, 1977, 91, 261-263.	0.9	33
140	In Vitro3,5,3′-Triiodothyronine Binding to Rat Cerebrocortical Neuronal and Glial Nuclei Suggests the Presence of Binding Sites Unavailable in Vivo*. Endocrinology, 1985, 116, 2019-2028.	1.4	33
141	Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase. Journal of Endocrinology, 2011, 211, 73-78.	1.2	32
142	The type I iodothyronine 5'-deiodinase messenger ribonucleic acid is localized to the S3 segment of the rat kidney proximal tubule Endocrinology, 1993, 132, 2136-2140.	1.4	31
143	Type-2 lodothyronine 5′Deiodinase (D2) in Skeletal Muscle of C57Bl/6 Mice. II. Evidence for a Role of D2 in the Hypermetabolism of Thyroid Hormone Receptor α-Deficient Mice. Endocrinology, 2011, 152, 3093-3102.	1.4	31
144	Update on the human iodothyronine selenodeiodinases, the enzymes regulating the activation and inactivation of thyroid hormone. Biochemical Society Transactions, 1997, 25, 588-592.	1.6	30

#	Article	IF	CITATIONS
145	The Basic Proteins of Cobra Venom. Journal of Biological Chemistry, 1968, 243, 1290-1296.	1.6	30
146	Subcellular distribution of iodothyronine 5′-deiodinase in cerebral cortex from hypothyroid rats. Biochimica Et Biophysica Acta - General Subjects, 1982, 718, 109-119.	1.1	29
147	Identification of critical amino acids for 3,5,3'-triiodothyronine deiodination by human type 1 deiodinase based on comparative functional-structural analyses of the human, dog, and rat enzymes. Journal of Biological Chemistry, 1994, 269, 20329-34.	1.6	29
148	Comparison of Kidney and Brown Adipose Tissue Iodothyronine 5′-Deiodinases*. Endocrinology, 1987, 121, 650-656.	1.4	28
149	Insulin stimulation of iodothyronine $5\hat{a}\in^2$ -deiodinase in rat brown adipocytes. Biochemical and Biophysical Research Communications, 1987, 143, 81-86.	1.0	28
150	Is There a Negative TRE in the Luciferase Reporter cDNA?. Thyroid, 1996, 6, 325-328.	2.4	27
151	The Role of the Active Site Cysteine in Catalysis by Type 1 lodothyronine Deiodinase*. Endocrinology, 1997, 138, 5452-5458.	1.4	27
152	The Guanosine Monophosphate Reductase Gene Is Conserved in Rats and Its Expression Increases Rapidly in Brown Adipose Tissue during Cold Exposure. Journal of Biological Chemistry, 1998, 273, 31092-31096.	1.6	27
153	lodide Transport: Inhibition by Agents Reacting at the Membrane. Science, 1967, 155, 335-336.	6.0	26
154	Formation of 3,3′-Diiodothyronine and 3′,5′,3-Triiodothyronine (Reverse T ₃) in Thyroid Glands of Rats and in Enzymatically Iodinated Thyroglobulin. Endocrinology, 1976, 99, 281-290.	1.4	26
155	Pituitary cells respond to thyroid hormone by discrete, gene-specific pathways Endocrinology, 1995, 136, 1488-1494.	1.4	26
156	Inhibition of triiodothyronine (T3) binding to thyroxine-binding globulin by sodium salicylate and its application to immunoassay of T3 in human serum. Metabolism: Clinical and Experimental, 1971, 20, 976-980.	1.5	24
157	The toxic proteins of cobra venom. Biochemical Pharmacology, 1968, 17, 503-504.	2.0	22
158	In Vivo Genomic Footprinting of Thyroid Hormone-Responsive Genes in Pituitary Tumor Cell Lines. Molecular and Cellular Biology, 1996, 16, 4465-4477.	1.1	22
159	Recommendations for screening programs for congenital hypothyroidism. American Journal of Medicine, 1976, 61, 932-934.	0.6	21
160	Direct Radioimmunoassay of Nuclear 3,5,3′ Triiodothyronine in Rat Anterior Pituitary. Journal of Clinical Investigation, 1980, 65, 675-681.	3.9	21
161	Tests of Thyroid Function. Medical Clinics of North America, 1975, 59, 1063-1074.	1.1	20
162	Commentary: Monitoring Thyroxine Treatment During Pregnancy. Thyroid, 1992, 2, 153-154.	2.4	20

#	Article	IF	CITATIONS
163	Evidence for a Possible Role for Ca++in the 3,5,3'-Triiodothyronine Inhibition of Thyrotropin-Releasing Hormone-Induced Secretion of Thyrotropin by Rat Anterior Pituitaryin Vitro*. Endocrinology, 1981, 108, 1690-1696.	1.4	17
164	Phorbol esters as probes of the regulation of thyrotropin secretion. Biochemical and Biophysical Research Communications, 1984, 125, 353-359.	1.0	13
165	Plasma Kinetics, Tissue Distribution, and Cerebrocortical Sources of Reverse Triiodothyronine in the Rat*. Endocrinology, 1985, 116, 2192-2200.	1.4	13
166	Triiodothyronine causes rapid reversal of α1/cyclic adenosine monophosphate synergism on brown adipocyte respiration and type II deiodinase activity. Metabolism: Clinical and Experimental, 1991, 40, 1327-1332.	1.5	11
167	The American Thyroid Association: D'où Venons Nous? Que Sommes Nous? Où Allons Nous? (Whence) Tj ETQq	1 1 0.7843 2.4	314 rgBT /0
168	Inhibition of accumulative transport by a protein from cobra venom. Biochemical Pharmacology, 1967, 16, 2003-2009.	2.0	10
169	Phorbol esters, protein kinase C, and thyroxine 5'-deiodinase in brown adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 1988, 254, E323-E327.	1.8	10
170	Effect of thyroid status on catecholamine stimulation of thyroxine 5'-deiodinase in brown adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 1989, 256, E74-E79.	1.8	8
171	Type I lodothyronine Deiodinase: Unexpected Complexities in a Simple Deiodination Reaction. Thyroid, 1994, 4, 357-362.	2.4	8
172	The Pituitary-Thyroid Regulatory System. Advances in Experimental Medicine and Biology, 1989, 261, 11-26.	0.8	7
173	Subacute thyroiditis in a lateral thyroid gland: Evaluation of the pituitary-thyroid axis during the acute destructive and the recovery phases. Journal of Pediatrics, 1975, 87, 34-37.	0.9	6
174	The structure of the coding and 5'-flanking region of the type 1 iodothyronine deiodinase (dio1) gene is normal in a patient with suspected congenital dio1 deficiency Journal of Clinical Endocrinology and Metabolism, 1996, 81, 2121-2124.	1.8	6
175	Hyperthyroidism. Disease-a-Month, 1976, 22, 1-30.	0.4	4
176	Photoaffinity Labeling of Rat Type I lodothyronine Deiodinase*. Endocrinology, 1991, 129, 1042-1048.	1.4	3
177	Prospective Studies of Thyroid Function in Patients Receiving Gold Therapy. Thyroid, 1995, 5, 113-116.	2.4	3
178	In vitro demonstration of iodide-trapping defect but normal thyrotropin (TSH) responsiveness in benign and malignant "cold" thyroid nodules. Transactions of the Association of American Physicians, 1972, 85, 309-16.	0.1	2
179	Immunometric assays may underestimate thyrotropin concentrations in sera from infants with congenital hypothyroidism Clinical Chemistry, 1988, 34, 2182-2182.	1.5	1
180	Response: Re: Thyroid Dysfunction from Antineoplastic Agents. Journal of the National Cancer Institute, 2012, 104, 423-423.	3.0	1

#	Article	IF	CITATIONS
181	Direct repeats. Nature, 1990, 345, 584-584.	13.7	Ο
182	Antiestrogens stimulate expression of transiently transfected and endogenous genes in rat pituitary tumor cell lines. Molecular and Cellular Endocrinology, 1991, 77, 133-140.	1.6	0
183	Van Meter Prize of the American Thyroid Association to Gregory Brent. Thyroid, 1997, 7, 153-154.	2.4	Ο
184	Thyroid hormone metabolism in the central nervous system. Vienna Clinical Weekly, 1988, 15 Suppl 1, 5-10.	0.9	0