
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11319138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Voluntary Wheel Running Partially Compensates for the Effects of Global Estrogen Receptor-α Knockout on Cortical Bone in Young Male Mice. International Journal of Molecular Sciences, 2021, 22, 1734.	4.1	8
2	White Adipose Tissue Depots Respond to Chronic Beta-3 Adrenergic Receptor Activation in a Sexually Dimorphic and Depot Divergent Manner. Cells, 2021, 10, 3453.	4.1	6
3	Changes in nucleus accumbens gene expression accompany sex-specific suppression of spontaneous physical activity in aromatase knockout mice. Hormones and Behavior, 2020, 121, 104719.	2.1	8
4	Global estrogen receptor-α knockout has differential effects on cortical and cancellous bone in aged male mice. Facets, 2020, 5, 328-348.	2.4	4
5	Effects of ERβ and ERα on OVX-induced changes in adiposity and insulin resistance. Journal of Endocrinology, 2020, 245, 165-178.	2.6	23
6	Quercetin Potentiates Docosahexaenoic Acid to Suppress Lipopolysaccharide-induced Oxidative/Inflammatory Responses, Alter Lipid Peroxidation Products, and Enhance the Adaptive Stress Pathways in BV-2 Microglial Cells. International Journal of Molecular Sciences, 2019, 20, 932.	4.1	18
7	Beta 3 Adrenergic Receptor Activation Rescues Metabolic Dysfunction in Female Estrogen Receptor Alpha-Null Mice. Frontiers in Physiology, 2019, 10, 9.	2.8	20
8	Estrogen receptor-α signaling maintains immunometabolic function in males and is obligatory for exercise-induced amelioration of nonalcoholic fatty liver. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E156-E167.	3.5	31
9	27-Hydroxycholesterol Is an Estrogen Receptor β–Selective Negative Allosteric Modifier of 17β-Estradiol Binding. Endocrinology, 2018, 159, 1972-1981.	2.8	18
10	Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells. NeuroMolecular Medicine, 2016, 18, 241-252.	3.4	61
11	Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochemistry International, 2016, 97, 49-56.	3.8	35
12	Inhibition of Gli/hedgehog signaling in prostate cancer cells by "cancer bush― <i>Sutherlandia frutescens</i> extract. Cell Biology International, 2016, 40, 131-142.	3.0	15
13	An Investigation into the Immunomodulatory Activities of Sutherlandia frutescens in Healthy Mice. PLoS ONE, 2016, 11, e0160994.	2.5	1
14	Unveiling the anti-inflammatory activity of Sutherlandia frutescens using murine macrophages. International Immunopharmacology, 2015, 29, 254-262.	3.8	13
15	Messenger RNA profile analysis deciphers new Esrrb responsive genes in prostate cancer cells. BMC Molecular Biology, 2015, 16, 21.	3.0	13
16	Genes targeted by the Hedgehog-signaling pathway can be regulated by Estrogen related receptor β. BMC Molecular Biology, 2015, 16, 19.	3.0	20
17	From Gigabyte to Kilobyte: A Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data. PLoS ONE, 2015, 10, e0125000.	2.5	7
18	Inhibition of Hedgehog-Signaling Driven Genes in Prostate Cancer Cells by Sutherlandia frutescens Extract. PLoS ONE, 2015, 10, e0145507.	2.5	7

#	Article	IF	CITATIONS
19	Antiproliferative and Antiestrogenic Activities of Bonediol an Alkyl Catechol fromBonellia macrocarpa. BioMed Research International, 2015, 2015, 1-6.	1.9	9
20	Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sciences, 2015, 128, 30-38.	4.3	36
21	Immuno-stimulatory activity of a polysaccharide-enriched fraction of Sutherlandia frutescens occurs by the toll-like receptor-4 signaling pathway. Journal of Ethnopharmacology, 2015, 172, 247-253.	4.1	39
22	The Role of Estrogen Signaling in a Mouse Model of Inflammatory Bowel Disease: A Helicobacter Hepaticus Model. PLoS ONE, 2014, 9, e94209.	2.5	40
23	Dietary Sutherlandia and Elderberry Mitigate Cerebral Ischemia-Induced Neuronal Damage and Attenuate p47phox and Phospho-ERK1/2 Expression in Microglial Cells. ASN Neuro, 2014, 6, 175909141455494.	2.7	24
24	Sutherlandia frutescens Ethanol Extracts Inhibit Oxidative Stress and Inflammatory Responses in Neurons and Microglial Cells. PLoS ONE, 2014, 9, e89748.	2.5	23
25	Aggressive Prostate Cancer Is Prevented in ERαKO Mice and Stimulated in ERβKO TRAMP Mice. Endocrinology, 2012, 153, 4160-4170.	2.8	47
26	Increased carcinogenâ€induced colon cancer in ERβKO compared to Wild Type mice. FASEB Journal, 2012, 26, 1023.11.	0.5	0
27	Common Botanical Compounds Inhibit the Hedgehog Signaling Pathway in Prostate Cancer. Cancer Research, 2010, 70, 3382-3390.	0.9	184
28	Estrogen receptor-α and -β and aromatase knockout effects on lower limb muscle mass and contractile function in female mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E854-E861.	3.5	55
29	Morphological comparison of the testis and efferent ductules between wildâ€ŧype and estrogen receptor α knockout mice during postnatal development. Journal of Anatomy, 2009, 214, 916-925.	1.5	24
30	Impact on Bone of an Estrogen Receptor- $\hat{l}\pm$ Gene Loss of Function Mutation. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 3088-3096.	3.6	74
31	Phytosterol Pygeum africanum regulates prostate cancer in vitro and in vivo. Endocrine, 2007, 31, 72-81.	2.2	46
32	Genistein affects HER2 protein concentration, activation, and promoter regulation in BT-474 human breast cancer cells. Endocrine, 2007, 32, 69-78.	2.2	60
33	Expression of aquaporins in the efferent ductules, sperm counts, and sperm motility in estrogen receptor-α deficient mice fed lab chow versus casein. Molecular Reproduction and Development, 2006, 73, 226-237.	2.0	54
34	Estrogenic Regulation of Host Immunity against an Estrogen Receptor–Negative Human Breast Cancer. Clinical Cancer Research, 2006, 12, 5641-5647.	7.0	15
35	Estrogen Receptor α (ERα) Deficiency in Macrophages Results in Increased Stimulation of CD4+ T Cells while 17β-Estradiol Acts through ERα to Increase IL-4 and GATA-3 Expression in CD4+ T Cells Independent of Antigen Presentation. Journal of Immunology, 2005, 175, 5716-5723.	0.8	128
36	Dietary Soy Isoflavones and Estrone Protect Ovariectomized ERαKO and Wild-Type Mice from Carcinogen-Induced Colon Cancer. Journal of Nutrition, 2004, 134, 179-182.	2.9	84

#	Article	IF	CITATIONS
37	Estrogen receptor-α deficiency promotes increased TNF-α secretion and bacterial killing by murine macrophages in response to microbial stimuli in vitro. Journal of Leukocyte Biology, 2004, 75, 1166-1172.	3.3	85
38	Phytoestrogens in Common Herbs Regulate Prostate Cancer Cell Growth in Vitro. Nutrition and Cancer, 2004, 49, 200-208.	2.0	101
39	Regulation of nitric oxide-dependent vasodilation in coronary arteries of estrogen receptor-α-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2150-H2157.	3.2	30
40	Estrogen Receptor α Mediates Estrogen's Immune Protection in Autoimmune Disease. Journal of Immunology, 2003, 171, 6936-6940.	0.8	147
41	The role of estrogen and estrogen receptor- $\hat{l}\pm$ in male adipose tissue. Molecular and Cellular Endocrinology, 2001, 178, 147-154.	3.2	126
42	Natural Killer Cells Express Estrogen Receptor-α and Estrogen Receptor-β and Can Respond to Estrogen Via a Non-Estrogen Receptor-α-Mediated Pathway. Cellular Immunology, 2001, 214, 12-20.	3.0	110
43	Estrogen receptor- and aromatase-deficient mice provide insight into the roles of estrogen within the ovary and uterus. Molecular Reproduction and Development, 2001, 59, 336-346.	2.0	32
44	Dominant Bovine Ovarian Follicular Cysts Express Increased Levels of Messenger RNAs for Luteinizing Hormone Receptor and 3β-Hydroxysteroid Dehydrogenase Δ4,Δ5 Isomerase Compared to Normal Dominant Follicles. Biology of Reproduction, 2001, 65, 471-476.	2.7	54
45	Regulation of Progesterone Receptors and Decidualization in Uterine Stroma of the Estrogen Receptor-α Knockout Mouse1. Biology of Reproduction, 2001, 64, 272-283.	2.7	98
46	Dietary Genistein Increased DMBA-Induced Mammary Adenocarcinoma in Wild-Type, but Not ERαKO, Mice. Nutrition and Cancer, 2001, 39, 226-232.	2.0	60
47	Estradiol (E2) Elicits Src Phosphorylation in the Mouse Neocortex: The Initial Event in E2 Activation of the MAPK Cascade?. Endocrinology, 2001, 142, 5145-5148.	2.8	25
48	Paracrine Regulation of Epithelial Progesterone Receptor by Estradiol in the Mouse Female Reproductive Tract1. Biology of Reproduction, 2000, 62, 821-830.	2.7	141
49	Normal Development of Thymus in Male and Female Mice Requires Estrogen/Estrogen Receptor-α Signaling Pathway. Endocrine, 2000, 12, 207-213.	2.2	61
50	Myocardial ischemia-reperfusion injury in estrogen receptor-α knockout and wild-type mice. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1640-H1647.	3.2	128
51	The Differential Fate of Mesonephric Tubular-Derived Efferent Ductules in Estrogen Receptor-α Knockout Versus Wild-Type Female Mice*. Endocrinology, 2000, 141, 3792-3798.	2.8	9
52	Gonadotropin Induction of Ovulation and Corpus Luteum Formation in Young Estrogen Receptor-α Knockout Mice1. Biology of Reproduction, 2000, 62, 599-605.	2.7	32
53	Estrogen Receptor α Has a Functional Role in the Mouse Rete Testis and Efferent Ductules1. Biology of Reproduction, 2000, 63, 1873-1880.	2.7	126
54	Targeted Disruption of the Estrogen Receptor-α Gene in Female Mice: Characterization of Ovarian Responses and Phenotype in the Adult*. Endocrinology, 1999, 140, 2733-2744.	2.8	201

#	Article	IF	CITATIONS
55	Uterine Decidual Response Occurs in Estrogen Receptor-α-Deficient Mice*. Endocrinology, 1999, 140, 2704-2710.	2.8	76
56	Tissue Compartment-Specific Estrogen Receptor-α Participation in the Mouse Uterine Epithelial Secretory Response**Presented in part at the 30th Annual Meeting of the Society for the Study of Reproduction, Portland, Oregon, August 1997. This work was supported by NIH Grants AG-15500 (to) Tj ETQq	0 0 ⴥrਊBT	/Overlock 10 T
57	Cloning, Sequencing, and Localization of Bovine Estrogen Receptor-Î ² within the Ovarian Follicle1. Biology of Reproduction, 1999, 60, 691-697.	2.7	85
58	Hypermethylation of the Wilms' tumor suppressor gene CpG island in human breast carcinomas. Breast Cancer Research and Treatment, 1999, 56, 35-43.	2.5	33
59	Steroid Feedback on Gonadotropin Release and Pituitary Gonadotropin Subunit mRNA in Mice Lacking a Functional Estrogen Receptor α. Endocrine, 1999, 11, 137-144.	2.2	92
60	Uterine Decidual Response Occurs in Estrogen Receptor-Â-Deficient Mice. Endocrinology, 1999, 140, 2704-2710.	2.8	19
61	Targeted Disruption of the Estrogen Receptor-Â Gene in Female Mice: Characterization of Ovarian Responses and Phenotype in the Adult. Endocrinology, 1999, 140, 2733-2744.	2.8	47
62	Methoxychlor Stimulates Estrogen-Responsive Messenger Ribonucleic Acids in Mouse Uterus through a Non-Estrogen Receptor (Non-ER)Â and Non-ERÂ Mechanism. Endocrinology, 1999, 140, 3526-3533.	2.8	20
63	Estrogen receptor mutations. Molecular and Cellular Endocrinology, 1998, 145, 61-66.	3.2	21
64	Roles of Estrogen Receptor-α Gene Expression in Reproduction-Related Behaviors in Female Mice**This work was supported by the Harry Frank Guggenheim Foundation (to S.O.), the University of Missouri-Columbia molecular biology program (to D.B.L.), and NIH Grant HD-05751 (to D.W.P.) Endocrinology, 1998, 139, 5070-5081.	2.8	454
65	Transcription and Translation of Estrogen Receptor-β in the Male Reproductive Tract of Estrogen Receptor-α Knock-Out and Wild-Type Mice ¹ . Endocrinology, 1998, 139, 2982-2987.	2.8	99
66	Modifications of Testosterone-Dependent Behaviors by Estrogen Receptor-α Gene Disruption in Male Mice ¹ . Endocrinology, 1998, 139, 5058-5069.	2.8	265
67	Mechanism of Estrogen Action: Lessons from the Estrogen Receptor-α Knockout Mouse1. Biology of Reproduction, 1998, 59, 470-475.	2.7	175
68	Role of Stromal and Epithelial Estrogen Receptors in Vaginal Epithelial Proliferation, Stratification, and Cornification**Presented, in part, at the 79th Annual Meeting of The Endocrine Society, Minneapolis, Minnesota, 1997 (Abstract OR14–5). This work was supported by NIH Grants AG-15500 (to) Tj	ETQq0000	rgBT/Overloc
69	Stromal-Epithelial Cell Communication in the Female Reproductive Tract. , 1998, , 491-506.		13
70	Roles of Estrogen Receptor-Â Gene Expression in Reproduction-Related Behaviors in Female Mice. Endocrinology, 1998, 139, 5070-5081.	2.8	134
71	Transcription and Translation of Estrogen Receptor-Â in the Male Reproductive Tract of Estrogen Receptor-Â Knock-Out and Wild-Type Mice. Endocrinology, 1998, 139, 2982-2987.	2.8	37
72	Estrogen Receptors Are Essential for Female Sexual Receptivity. Endocrinology, 1997, 138, 507-510.	2.8	155

#	Article	IF	CITATIONS
73	Estrogen Up-regulates Apolipoprotein E (ApoE) Gene Expression by Increasing ApoE mRNA in the Translating Pool via the Estrogen Receptor α-Mediated Pathway. Journal of Biological Chemistry, 1997, 272, 33360-33366.	3.4	158
74	Role of Estrogen Receptor-α in the Anterior Pituitary Gland. Molecular Endocrinology, 1997, 11, 674-681.	3.7	187
75	Estrogen Receptor Function as Revealed by Knockout Studies: Neuroendocrine and Behavioral Aspects. Hormones and Behavior, 1997, 31, 232-243.	2.1	179
76	Masculine Sexual Behavior Is Disrupted in Male and Female Mice Lacking a Functional Estrogen Receptor α Gene. Hormones and Behavior, 1997, 32, 176-183.	2.1	224
77	Estrogen inhibits the vascular injury response in estrogen receptor α-deficient mice. Nature Medicine, 1997, 3, 545-548.	30.7	448
78	A role for oestrogens in the male reproductive system. Nature, 1997, 390, 509-512.	27.8	816
79	Estrogen Receptors Are Essential for Female Sexual Receptivity. Endocrinology, 1997, 138, 507-510.	2.8	59
80	Reversal of Sex Roles in Genetic Female Mice by Disruption of Estrogen Receptor Gene. Neuroendocrinology, 1996, 64, 467-470.	2.5	141
81	Estrogen Resistance Caused by a Mutation in the Estrogen-Receptor Gene in a Man. New England Journal of Medicine, 1994, 331, 1056-1061.	27.0	2,358
82	An androgen-inducible expression system for Saccharomyces cerevisiae. Gene, 1991, 106, 35-42.	2.2	110
83	Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature, 1991, 352, 77-79.	27.8	2,710
84	A Frameshift Mutation Destabilizes Androgen Receptor Messenger RNA in the <i>Tfm</i> Mouse. Molecular Endocrinology, 1991, 5, 573-581.	3.7	168
85	New Approaches to Studies on the Androgen Receptor. , 1991, , 243-252.		0
86	Expression of Recombinant Androgen Receptor in Cultured Mammalian Cells. Molecular Endocrinology, 1990, 4, 1399-1407.	3.7	71
87	Functional Characterization of Naturally Occurring Mutant Androgen Receptors from Subjects with Complete Androgen Insensitivity. Molecular Endocrinology, 1990, 4, 1759-1772.	3.7	134
88	Immunohistochemical Localization of the Androgen Receptor in Rat and Human Tissues*. Endocrinology, 1990, 127, 3180-3186.	2.8	469
89	A steroid/thyroid hormone receptor superfamily member inDrosophila melanogasterthat shares extensive sequence similarity with a mammalian homologue. Nucleic Acids Research, 1990, 18, 4143-4148.	14.5	183
90	Autologous Down-Regulation of Androgen Receptor Messenger Ribonucleic Acid. Molecular Endocrinology, 1990, 4, 22-28.	3.7	258

#	Article	IF	CITATIONS
91	Novel Antipeptide Antibodies to the Human Glucocorticoid Receptor: Recognition of Multiple Receptor Forms <i>in Vitro</i> and Distinct Localization of Cytoplasmic and Nuclear Receptors. Molecular Endocrinology, 1990, 4, 1427-1437.	3.7	139
92	Molecular Basis of Androgen Insensitivity. , 1990, 46, 1-42.		22
93	Cortisol Alters Gene Expression during Involution of the Rat Ventral Prostate. Molecular Endocrinology, 1989, 3, 703-708.	3.7	57
94	Structural Analysis of the Human and Rat Androgen Receptors and Expression in Male Reproductive Tract Tissues. Annals of the New York Academy of Sciences, 1989, 564, 48-56.	3.8	23
95	The Human Androgen Receptor: Complementary Deoxyribonucleic Acid Cloning, Sequence Analysis and Gene Expression in Prostate. Molecular Endocrinology, 1988, 2, 1265-1275.	3.7	555
96	The Rat Androgen Receptor: Primary Structure, Autoregulation of its Messenger Ribonucleic Acid, and Immunocytochemical Localization of the Receptor Protein. Molecular Endocrinology, 1988, 2, 1276-1285.	3.7	268
97	Antibodies to Steroid Receptor Deoxyribonucleic Acid Binding Domains and their Reactivity with the Human Glucocorticoid Receptor. Molecular Endocrinology, 1988, 2, 1018-1026.	3.7	32
98	The Production of Antibodies Against the Conserved Cysteine Region of Steroid Receptors and Their Use in Characterizing the Avian Progesterone Receptor*. Endocrinology, 1988, 122, 2816-2825.	2.8	45