Sean D Schoville

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1131836/publications.pdf

Version: 2024-02-01

69 3,166 24 51
papers citations h-index g-index

82 82 82 4401 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Testing for Associations between Loci and Environmental Gradients Using Latent Factor Mixed Models. Molecular Biology and Evolution, 2013, 30, 1687-1699.	8.9	627
2	Adaptive Genetic Variation on the Landscape: Methods and Cases. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 23-43.	8.3	250
3	A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Scientific Reports, 2018, 8, 1931.	3.3	215
4	Controlling false discoveries in genome scans for selection. Molecular Ecology, 2016, 25, 454-469.	3.9	210
5	Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus. BMC Evolutionary Biology, 2012, 12, 170.	3.2	150
6	Gene content evolution in the arthropods. Genome Biology, 2020, 21, 15.	8.8	150
7	Species diversity of insects in Japan: Their origins and diversification processes. Entomological Science, 2017, 20, 357-381.	0.6	96
8	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009–30 November 2009. Molecular Ecology Resources, 2010, 10, 404-408.	4.8	84
9	Detecting adaptive evolution based on association with ecological gradients: Orientation matters!. Heredity, 2015, 115, 22-28.	2.6	76
10	Is Chytridiomycosis an Emerging Infectious Disease in Asia?. PLoS ONE, 2011, 6, e23179.	2. 5	76
11	Pesticide durability and the evolution of resistance: A novel application of survival analysis. Pest Management Science, 2018, 74, 1953-1963.	3.4	59
12	Rapid evolution in insect pests: the importance of space and time in population genomics studies. Current Opinion in Insect Science, 2018, 26, 8-16.	4.4	58
13	Characterizing Molecular Mechanisms of Imidacloprid Resistance in Select Populations of Leptinotarsa decemlineata in the Central Sands Region of Wisconsin. PLoS ONE, 2016, 11, e0147844.	2.5	57
14	Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides. Molecular Ecology, 2017, 26, 6284-6300.	3.9	56
15	Testing the â€~Pleistocene species pump' in alpine habitats: lineage diversification of flightless ground beetles (Coleoptera: Carabidae: Nebria) in relation to altitudinal zonation. Biological Journal of the Linnean Society, 2012, 107, 95-111.	1.6	55
16	RNA interference of three up-regulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata. Pesticide Biochemistry and Physiology, 2017, 135, 35-40.	3.6	47
17	Evolutionary diversification of cryophilic Grylloblatta species (Grylloblattodea: Grylloblattidae) in alpine habitats of California. BMC Evolutionary Biology, 2010, 10, 163.	3.2	44
18	Recent collapse of crop belts and declining diversity of US agriculture since 1840. Global Change Biology, 2021, 27, 151-164.	9 . 5	40

#	Article	IF	CITATIONS
19	Alpine biogeography of Parnassian butterflies during Quaternary climate cycles in North America. Molecular Ecology, 2009, 18, 3471-3485.	3.9	37
20	Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 2018, 111, 868-878.	1.8	35
21	Reverse genetics in the tide pool: knockâ€down of target gene expression via <scp>RNA</scp> interference in the copepod <i><scp>T</scp>igriopus californicus</i> . Molecular Ecology Resources, 2015, 15, 868-879.	4.8	31
22	Genome Resequencing Reveals Rapid, Repeated Evolution in the Colorado Potato Beetle. Molecular Biology and Evolution, 2022, 39, .	8.9	31
23	Pleistocene origin and population history of a neoendemic alpine butterfly. Molecular Ecology, 2011, 20, 1233-1247.	3.9	29
24	Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle, <i>Leptinotarsa decemlineata</i> . Evolutionary Applications, 2021, 14, 746-757.	3.1	29
25	Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles. PLoS ONE, 2016, 11, e0151959.	2.5	29
26	Correcting Principal Component Maps for Effects of Spatial Autocorrelation in Population Genetic Data. Frontiers in Genetics, 2012, 3, 254.	2.3	28
27	A Comparison of Resistance to Imidacloprid in Colorado Potato Beetle (Leptinotarsa decemlineata Say) Populations Collected in the Northwest and Midwest U.S American Journal of Potato Research, 2018, 95, 495-503.	0.9	28
28	Ice Crawlers (Grylloblattodea) $\hat{a}\in$ the history of the investigation of a highly unusual group of insects. Journal of Insect Biodiversity, 2014, 2, 1.	0.4	26
29	Conservation genetics of evolutionary lineages of the endangered mountain yellow-legged frog, Rana muscosa (Amphibia: Ranidae), in southern California. Biological Conservation, 2011, 144, 2031-2040.	4.1	24
30	Colliding fragment islands transport independent lineages of endemic rock-crawlers (Grylloblattodea: Grylloblattidae) in the Japanese archipelago. Molecular Phylogenetics and Evolution, 2013, 66, 915-927.	2.7	24
31	Sharing and reporting benefits from biodiversity research. Molecular Ecology, 2021, 30, 1103-1107.	3.9	19
32	Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae). Journal of Insect Physiology, 2015, 78, 55-61.	2.0	18
33	Regional differences in gene regulation may underlie patterns of sensitivity to novel insecticides in <i>Leptinotarsa decemlineata /i>. Pest Management Science, 2020, 76, 4278-4285.</i>	3.4	18
34	Effects of contemporary agricultural land cover on Colorado potato beetle genetic differentiation in the Columbia Basin and Central Sands. Ecology and Evolution, 2019, 9, 9385-9394.	1.9	17
35	Temporal patterns of imidacloprid resistance throughout a growing season in <i>Leptinotarsa decemlineata</i> populations. Pest Management Science, 2017, 73, 641-650.	3.4	17
36	Preserving genetic connectivity in the European Alps protected area network. Biological Conservation, 2018, 218, 99-109.	4.1	16

#	Article	IF	Citations
37	Elevated rates of positive selection drive the evolution of pestiferousness in the Colorado potato beetle (<i>Leptinotarsa decemlineata</i> , Say). Molecular Ecology, 2021, 30, 237-254.	3.9	16
38	Morphological Clines and Weak Drift along an Urbanization Gradient in the Butterfly, Pieris rapae. PLoS ONE, 2013, 8, e83095.	2.5	15
39	A rangeâ€wide genetic bottleneck overwhelms contemporary landscape factors and local abundance in shaping genetic patterns of an alpine butterfly (Lepidoptera: Pieridae: ⟨i⟩Colias behrii⟨/i⟩). Molecular Ecology, 2012, 21, 4242-4256.	3.9	14
40	Agricultural fungicides inadvertently influence the fitness of Colorado potato beetles, Leptinotarsa decemlineata, and their susceptibility to insecticides. Scientific Reports, 2018, 8, 13282.	3.3	14
41	Editorial overview: Ecology: Ecological adaptation in agroecosystems: novel opportunities to integrate evolutionary biology and agricultural entomology. Current Opinion in Insect Science, 2018, 26, iv-viii.	4.4	14
42	Patterns of genetic differentiation in Colorado potato beetle correlate with contemporary, not historic, potato land cover. Evolutionary Applications, 2019, 12, 804-814.	3.1	14
43	<p class="HeadingRunIn">Updated checklist of the ice-crawlers (Insecta:) Tj ETQq1 1 0.78431-biogeography and conservation</p> . Zootaxa, 2013, 3737, 351.	4 rgBT /O\ 0.5	verlock 10 13
44	A highâ€quality carabid genome assembly provides insights into beetle genome evolution and cold adaptation. Molecular Ecology Resources, 2021, 21, 2145-2165.	4.8	13
45	Phylogenetic Relationships and Relictualism of Rock-Crawlers (Grylloblattodea: Grylloblattidae) in Cave and Mountain Habitats of Korea. Annals of the Entomological Society of America, 2011, 104, 337-347.	2.5	12
46	Three new species of Grylloblatta Walker (Insecta: Grylloblattodea: Grylloblattidae), from southern Oregon and northern California. Zootaxa, 2012, 3412, 42.	0.5	12
47	Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus. PLoS ONE, 2012, 7, e40035.	2.5	12
48	Testing the role of ecological selection on colour pattern variation in the butterfly <i>Parnassius clodius</i> . Molecular Ecology, 2019, 28, 5086-5102.	3.9	11
49	Rapid speciation and ecological divergence into North American alpine habitats: the Nippononebria (Coleoptera: Carabidae) species complex. Biological Journal of the Linnean Society, 2020, 130, 18-33.	1.6	11
50	A comprehensive analysis comparing linear and generalized linear models in detecting adaptive SNPs. Molecular Ecology Resources, 2021, 21, 733-744.	4.8	11
51	Shifts in the relative fitness contributions of fecundity and survival in variable and changing environments. Journal of Experimental Biology, 2021, 224, .	1.7	11
52	Current status of the systematics and evolutionary biology of <scp>G</scp> rylloblattidae (<scp>G</scp> rylloblattodea). Systematic Entomology, 2014, 39, 197-204.	3.9	10
53	Exploring the Genetic Diversity of Wild Cranberry Populations in the Upper Midwestern United States. Crop Science, 2019, 59, 2413-2428.	1.8	9
54	Evidence for niche conservatism in alpine beetles under a climateâ€driven species pump model. Journal of Biogeography, 2022, 49, 364-377.	3.0	9

#	Article	IF	Citations
55	Drainage basins serve as multiple glacial refugia for alpine habitats in the Sierra Nevada Mountains, California. Molecular Ecology, 2021, 30, 826-843.	3.9	8
56	Selection for High Oridonin Yield in the Chinese Medicinal Plant Isodon (Lamiaceae) Using a Combined Phylogenetics and Population Genetics Approach. PLoS ONE, 2012, 7, e50753.	2.5	7
57	Invasion and rapid adaptation of guppies (<i>Poecilia reticulata</i>) across the Hawaiian Archipelago. Evolutionary Applications, 2021, 14, 1747-1761.	3.1	6
58	Phylogeny of the supertribe Nebriitae (Coleoptera, Carabidae) based on analyses of DNA sequence data. ZooKeys, 2021, 1044, 41-152.	1.1	6
59	Testing models of refugial isolation, colonization and population connectivity in two species of montane salamanders. Heredity, 2017, 119, 265-274.	2.6	5
60	Comparative transcriptomics of iceâ€erawlers demonstrates cold specialization constrains niche evolution in a relict lineage. Evolutionary Applications, 2021, 14, 360-382.	3.1	5
61	Impacts of Fire on Butterfly Genetic Diversity and Connectivity. Journal of Heredity, 2021, 112, 367-376.	2.4	5
62	Plant Resistance to Colorado Potato Beetle (Coleoptera: Chrysomelidae) in Diploid F2 Families Derived From Crosses Between Cultivated and Wild Potato. Journal of Economic Entomology, 2018, 111, 1875-1884.	1.8	4
63	Has past climate change affected coldâ€specialized species differentially through space and time?. Systematic Entomology, 2019, 44, 571-587.	3.9	4
64	Do different rates of gene flow underlie variation in phenotypic and phenological clines in a montane grasshopper community?. Ecology and Evolution, 2020, 10, 980-997.	1.9	4
65	Ecological and evolutionary factors mitigating Colorado potato beetle adaptation to insecticides. , 2022, , 463-479.		2
66	Population Genomic Insights into Insecticide Resistance in the Colorado Potato Beetle. Population Genomics, 2021, , 1.	0.5	1
67	Grylloblattodea of Canada. ZooKeys, 2019, 819, 271-276.	1.1	1
68	Biogeography of North American Highlands. , 2020, , 530-542.		0
69	Two new species of Bimastos (Oligochaeta, Lumbricidae) from the Southern Appalachian Mountains, North America. Zootaxa, 2021, 5052, 395-405.	0.5	0