
Yi-Ning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11316544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes—The role of hydrodynamic conditions, solution chemistry, and membrane properties. Journal of Membrane Science, 2011, 376, 275-282.	8.2	224
2	Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate. Desalination, 2017, 401, 142-150.	8.2	137
3	Membranes and processes for forward osmosis-based desalination: Recent advances and future prospects. Desalination, 2018, 434, 81-99.	8.2	130
4	Fouling of Nanofiltration, Reverse Osmosis, and Ultrafiltration Membranes by Protein Mixtures: The Role of Inter-Foulant-Species Interaction. Environmental Science & Technology, 2011, 45, 6373-6379.	10.0	126
5	Direct microscopic observation of forward osmosis membrane fouling by microalgae: Critical flux and the role of operational conditions. Journal of Membrane Science, 2013, 436, 174-185.	8.2	122
6	Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules. Water Research, 2013, 47, 1867-1874.	11.3	121
7	The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Desalination, 2009, 249, 1079-1087.	8.2	102
8	Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination, 2015, 370, 79-86.	8.2	93
9	Analyzing the Evolution of Membrane Fouling via a Novel Method Based on 3D Optical Coherence Tomography Imaging. Environmental Science & Technology, 2016, 50, 6930-6939.	10.0	79
10	Nanofiltration Membrane Fouling by Oppositely Charged Macromolecules: Investigation on Flux Behavior, Foulant Mass Deposition, and Solute Rejection. Environmental Science & Technology, 2011, 45, 8941-8947.	10.0	71
11	Characterization of internal and external concentration polarizations during forward osmosis processes. Desalination, 2014, 338, 65-73.	8.2	69
12	Whey recovery using forward osmosis – Evaluating the factors limiting the flux performance. Journal of Membrane Science, 2017, 533, 179-189.	8.2	61
13	Microscopic Characterization of FO/PRO Membranes – A Comparative Study of CLSM, TEM and SEM. Environmental Science & Technology, 2012, 46, 9995-10003.	10.0	54
14	Gypsum scaling and membrane integrity of osmotically driven membranes: The effect of membrane materials and operating conditions. Desalination, 2016, 377, 1-10.	8.2	53
15	Comparison of NF-like and RO-like thin film composite osmotically-driven membranes—Implications for membrane selection and process optimization. Journal of Membrane Science, 2013, 427, 460-471.	8.2	47
16	Enhancing pressure retarded osmosis performance with low-pressure nanofiltration pretreatment: Membrane fouling analysis and mitigation. Journal of Membrane Science, 2017, 543, 114-122.	8.2	34
17	Silica scaling and scaling control in pressure retarded osmosis processes. Journal of Membrane Science, 2017, 541, 73-84.	8.2	24
18	Enhancing boron rejection in FO using alkaline draw solutions. Water Research, 2017, 118, 20-25.	11.3	19

#	Article	IF	CITATIONS
19	Reverse Osmosis Membrane Separation Technology. , 2019, , 1-45.		10
20	Understanding the effect of transverse vibration on hollow fiber membranes for submerged forward osmosis processes. Journal of Membrane Science, 2020, 610, 118211.	8.2	7
21	Thermo-responsive nonionic amphiphilic copolymers as draw solutes in forward osmosis process for high-salinity water reclamation. Water Research, 2022, 221, 118768.	11.3	5