Cesare Montecucco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1130513/publications.pdf

Version: 2024-02-01

249 papers

20,917 citations

9775 73 h-index 135 g-index

253 all docs

docs citations

253

253 times ranked 10735 citing authors

#	Article	IF	CITATIONS
1	Latrotoxin-Induced Neuromuscular Junction Degeneration Reveals Urocortin 2 as a Critical Contributor to Motor Axon Terminal Regeneration. International Journal of Molecular Sciences, 2022, 23, 1186.	1.8	1
2	An agonist of the CXCR4 receptor is therapeutic for the neuroparalysis induced by <i>Bungarus</i> snakes envenoming. Clinical and Translational Medicine, 2022, 12, e651.	1.7	6
3	Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Archives of Toxicology, 2022, 96, 1521-1539.	1.9	22
4	Detection of VAMP Proteolysis by Tetanus and Botulinum Neurotoxin Type B In Vivo with a Cleavage-Specific Antibody. International Journal of Molecular Sciences, 2022, 23, 4355.	1.8	6
5	Melatonin promotes regeneration of injured motor axons via MT ₁ receptors. Journal of Pineal Research, 2021, 70, e12695.	3.4	21
6	Tetanus and tetanus neurotoxin: From peripheral uptake to central nervous tissue targets. Journal of Neurochemistry, 2021, 158, 1244-1253.	2.1	21
7	Exceptionally potent human monoclonal antibodies are effective for prophylaxis and treatment of tetanus in mice. Journal of Clinical Investigation, 2021, 131, .	3.9	8
8	Novel Small Molecule Inhibitors That Prevent the Neuroparalysis of Tetanus Neurotoxin. Pharmaceuticals, 2021, 14, 1134.	1.7	3
9	An agonist of the CXCR4 receptor accelerates the recovery from the peripheral neuroparalysis induced by Taipan snake envenomation. PLoS Neglected Tropical Diseases, 2020, 14, e0008547.	1.3	8
10	Clinical duration of action of different botulinum toxin types in humans. Toxicon, 2020, 179, 84-91.	0.8	24
11	An Agonist of the CXCR4 Receptor Strongly Promotes Regeneration of Degenerated Motor Axon Terminals. Cells, 2019, 8, 1183.	1.8	16
12	The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cellular Microbiology, 2019, 21, e13037.	1.1	17
13	A CXCR4 receptor agonist strongly stimulates axonal regeneration after damage. Annals of Clinical and Translational Neurology, 2019, 6, 2395-2402.	1.7	15
14	Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins, 2019, 11, 686.	1.5	69
15	Hydrogen peroxide is a neuronal alarmin that triggers specific RNAs, local translation of Annexin A2, and cytoskeletal remodeling in Schwann cells. Rna, 2018, 24, 915-925.	1.6	14
16	Discovery of novel bacterial toxins by genomics and computational biology. Toxicon, 2018, 147, 2-12.	0.8	46
17	Hsp90 and Thioredoxin-Thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon, 2018, 147, 32-37.	0.8	24
18	Neurophysiologic profile in muscular reinnervation of different botulinum toxins in humans. Toxicon, 2018, 156, S23.	0.8	0

#	Article	IF	CITATIONS
19	Detection of Clostridium tetani Neurotoxins Inhibited In Vivo by Botulinum Antitoxin B: Potential for Misleading Mouse Test Results in Food Controls. Toxins, 2018, 10, 248.	1.5	4
20	Primary resistance of human patients to botulinum neurotoxins A and B. Annals of Clinical and Translational Neurology, 2018, 5, 971-975.	1.7	4
21	Tetanus and Botulinum Neurotoxins. Toxinology, 2018, , 171-186.	0.2	O
22	Schwann cells are activated by ATP released from neurons in an <i>in vitro</i> cellular model of Miller Fisher syndrome. DMM Disease Models and Mechanisms, 2017, 10, 597-603.	1.2	16
23	<scp>CXCL</scp> 12α/ <scp>SDF</scp> â€1 from perisynaptic Schwann cells promotes regeneration of injured motor axonÂterminals. EMBO Molecular Medicine, 2017, 9, 1000-1010.	3.3	48
24	Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacological Reviews, 2017, 69, 200-235.	7.1	506
25	Animal models for studying motor axon terminal paralysis and recovery. Journal of Neurochemistry, 2017, 142, 122-129.	2.1	18
26	Identification and characterization of C lostridium botulinum group III field strains by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). Anaerobe, 2017, 48, 126-134.	1.0	13
27	Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cellular Microbiology, 2017, 19, e12647.	1.1	39
28	Electrophysiological Characterization of the Antarease Metalloprotease from Tityus serrulatus Venom. Toxins, 2017, 9, 81.	1.5	8
29	High Conservation of Tetanus and Botulinum Neurotoxins Cleavage Sites on Human SNARE Proteins Suggests That These Pathogens Exerted Little or No Evolutionary Pressure on Humans. Toxins, 2017, 9, 404.	1.5	9
30	Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells from Intoxication. Toxins, 2016, 8, 221.	1.5	11
31	EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens lota Toxin and Clostridium botulinum C2 Toxin. Toxins, 2016, 8, 101.	1.5	7
32	ATP Released by Injured Neurons Activates Schwann Cells. Frontiers in Cellular Neuroscience, 2016, 10, 134.	1.8	27
33	Botulinum neurotoxin A1 likes it double sweet. Nature Structural and Molecular Biology, 2016, 23, 619-621.	3.6	6
34	The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Scientific Reports, 2016, 6, 30257.	1.6	84
35	An animal model of Miller Fisher syndrome: Mitochondrial hydrogen peroxide is produced by the autoimmune attack of nerve terminals and activates Schwann cells. Neurobiology of Disease, 2016, 96, 95-104.	2.1	26
36	On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 467-474.	1.4	82

#	Article	IF	CITATIONS
37	Thioredoxin reductase inhibitor auranofin prevents membrane transport of diphtheria toxin into the cytosol and protects human cells from intoxication. Toxicon, 2016, 116, 23-28.	0.8	16
38	Tetanus and Botulinum Neurotoxins. , 2016, , 1-16.		0
39	A Novel Inhibitor Prevents the Peripheral Neuroparalysis of Botulinum Neurotoxins. Scientific Reports, 2015, 5, 17513.	1.6	29
40	Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction. Toxins, 2015, 7, 5322-5336.	1.5	30
41	On Botulinum Neurotoxin Variability. MBio, 2015, 6, .	1.8	78
42	Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E497-505.	3.3	59
43	Current gaps in basic science knowledge of botulinum neurotoxin biological actions. Toxicon, 2015, 107, 59-63.	0.8	15
44	Practical guidance for CD management involving treatment of botulinum toxin: a consensus statement. Journal of Neurology, 2015, 262, 2201-2213.	1.8	59
45	The thioredoxin reductase – Thioredoxin redox system cleaves the interchain disulphide bond of botulinum neurotoxins on the cytosolic surface of synaptic vesicles. Toxicon, 2015, 107, 32-36.	0.8	26
46	Inhibition of botulinum neurotoxins interchain disulfide bond reduction prevents the peripheral neuroparalysis of botulism. Biochemical Pharmacology, 2015, 98, 522-530.	2.0	33
47	The synaptotagmin juxtamembrane domain is involved in neuroexocytosis. FEBS Open Bio, 2015, 5, 388-396.	1.0	6
48	Thioredoxin and Its Reductase Are Present on Synaptic Vesicles, and Their Inhibition Prevents the Paralysis Induced by Botulinum Neurotoxins. Cell Reports, 2014, 8, 1870-1878.	2.9	90
49	The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cellular and Molecular Life Sciences, 2014, 71, 793-811.	2.4	101
50	Diphtheria toxin conformational switching at acidic pH. FEBS Journal, 2014, 281, 2115-2122.	2.2	26
51	Botulinum neurotoxins: genetic, structural and mechanistic insights. Nature Reviews Microbiology, 2014, 12, 535-549.	13.6	461
52	Synergism between Basic Asp49 and Lys49 Phospholipase A2 Myotoxins of Viperid Snake Venom In Vitro and In Vivo. PLoS ONE, 2014, 9, e109846.	1.1	76
53	Botulinum Neurotoxin Type A is Internalized and Translocated from Small Synaptic Vesicles at the Neuromuscular Junction. Molecular Neurobiology, 2013, 48, 120-127.	1.9	65
54	The thioredoxin reductaseâ€thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Letters, 2013, 587, 150-155.	1.3	55

#	Article	IF	CITATIONS
55	Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Letters, 2013, 587, 3831-3836.	1.3	33
56	Botulinum neurotoxin serotype D is poorly effective in humans: An in vivo electrophysiological study. Clinical Neurophysiology, 2013, 124, 999-1004.	0.7	37
57	Calpains participate in nerve terminal degeneration induced by spider and snake presynaptic neurotoxins. Toxicon, 2013, 64, 20-28.	0.8	19
58	Why myotoxin-containing snake venoms possess powerful nucleotidases?. Biochemical and Biophysical Research Communications, 2013, 430, 1289-1293.	1.0	33
59	Time course and temperature dependence of the membrane translocation of tetanus and botulinum neurotoxins C and D in neurons. Biochemical and Biophysical Research Communications, 2013, 430, 38-42.	1.0	30
60	The Apoptogenic Toxin AIP56 Is a Metalloprotease A-B Toxin that Cleaves NF-κb P65. PLoS Pathogens, 2013, 9, e1003128.	2.1	41
61	Evidence for a radial SNARE super-complex mediating neurotransmitter release at the <i>Drosophila</i> neuromuscular junction. Journal of Cell Science, 2013, 126, 3134-40.	1.2	29
62	Muscle phospholipid hydrolysis by <i><scp>B</scp>othropsÂasper </i> <scp>A</scp> sp49 and <scp>L</scp> ys49 phospholipaseÂ <scp>A</scp> ₂ myotoxins â€" distinct mechanisms of action. FEBS Journal, 2013, 280, 3878-3886.	2.2	42
63	The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21095-21100.	3.3	125
64	Envenomations by Bothrops and Crotalus Snakes Induce the Release of Mitochondrial Alarmins. PLoS Neglected Tropical Diseases, 2012, 6, e1526.	1.3	32
65	Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cellular Microbiology, 2011, 13, 1731-1743.	1.1	61
66	Lipid function at synapses. Current Opinion in Neurobiology, 2010, 20, 543-549.	2.0	53
67	Imaging the cell entry of the anthrax oedema and lethal toxins with fluorescent protein chimeras. Cellular Microbiology, 2010, 12, 1435-1445.	1.1	50
68	Bothrops snake myotoxins induce a large efflux of ATP and potassium with spreading of cell damage and pain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14140-14145.	3.3	66
69	Arg206 of SNAP-25 is essential for neuroexocytosis at the <i>Drosophila melanogaster</i> neuromuscular junction. Journal of Cell Science, 2010, 123, 3276-3283.	1.2	18
70	The C-terminal region of a Lys49 myotoxin mediates Ca2+ influx in C2C12 myotubes. Toxicon, 2010, 55, 590-596.	0.8	28
71	Paralytic activity of lysophosphatidylcholine from saliva of the waterbug Belostoma anurum. Journal of Experimental Biology, 2010, 213, 3305-3310.	0.8	14
72	The Adenylate Cyclase Toxins of Bacillus anthracis and Bordetella pertussis Promote Th2 Cell Development by Shaping T Cell Antigen Receptor Signaling. PLoS Pathogens, 2009, 5, e1000325.	2.1	43

#	Article	IF	Citations
73	Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes. FEBS Letters, 2009, 583, 2321-2325.	1.3	17
74	Assay of diffusion of different botulinum neurotoxin type a formulations injected in the mouse leg. Muscle and Nerve, 2009, 40, 374-380.	1.0	92
75	Mass spectrometry analysis of the phospholipase A ₂ activity of snake preâ€synaptic neurotoxins in cultured neurons. Journal of Neurochemistry, 2009, 111, 737-744.	2.1	48
76	The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochemical and Biophysical Research Communications, 2009, 380, 76-80.	1.0	80
77	Different mechanisms of inhibition of nerve terminals by botulinum and snake presynaptic neurotoxins. Toxicon, 2009, 54, 561-564.	0.8	26
78	Calcium overload in nerve terminals of cultured neurons intoxicated by alpha-latrotoxin and snake PLA2 neurotoxins. Toxicon, 2009, 54, 138-144.	0.8	54
79	The anthrax lethal factor and its MAPK kinase-specific metalloprotease activity. Molecular Aspects of Medicine, 2009, 30, 431-438.	2.7	71
80	Neurotoxicity of inverted-cone shaped lipids. NeuroToxicology, 2009, 30, 174-181.	1.4	9
81	Tetanus, botulinum and snake presynaptic neurotoxins. Rendiconti Lincei, 2008, 19, 173-188.	1.0	3
82	Tetanus Toxin Fragment C Binds to a Protein Present in Neuronal Cell Lines and Motoneurons. Journal of Neurochemistry, 2008, 74, 1941-1950.	2.1	76
83	Pathogenomics: An updated European Research Agenda. Infection, Genetics and Evolution, 2008, 8, 386-393.	1.0	8
84	The Vibrio cholerae cytolysin promotes activation of mast cell (T helper 2) cytokine production. Cellular Microbiology, 2008, 10, 899-907.	1.1	8
85	Bacillus anthracis: Balancing innocent research with dual-use potential. International Journal of Medical Microbiology, 2008, 298, 345-364.	1.5	37
86	Ratio of lethal and edema factors in rabbit systemic anthrax. Toxicon, 2008, 52, 824-828.	0.8	41
87	cAMP imaging of cells treated with pertussis toxin, cholera toxin, and anthrax edema toxin. Biochemical and Biophysical Research Communications, 2008, 376, 429-433.	1.0	18
88	Chapter 11 Botulism. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 91, 333-368.	1.0	109
89	Snake Phospholipase A2 Neurotoxins Enter Neurons, Bind Specifically to Mitochondria, and Open Their Transition Pores. Journal of Biological Chemistry, 2008, 283, 34013-34020.	1.6	86
90	Suppression of T-Lymphocyte Activation and Chemotaxis by the Adenylate Cyclase Toxin of <i>Bordetella pertussis </i> Infection and Immunity, 2008, 76, 2822-2832.	1.0	53

#	Article	IF	CITATIONS
91	Anthrax Edema Toxin Modulates PKA- and CREB-Dependent Signaling in Two Phases. PLoS ONE, 2008, 3, e3564.	1.1	19
92	Calcium Influx and Mitochondrial Alterations at Synapses Exposed to Snake Neurotoxins or Their Phospholipid Hydrolysis Products. Journal of Biological Chemistry, 2007, 282, 11238-11245.	1.6	61
93	Transient Synaptic Silencing of Developing Striate Cortex Has Persistent Effects on Visual Function and Plasticity. Journal of Neuroscience, 2007, 27, 4530-4540.	1.7	53
94	The Neutrophil-Activating Protein of <i>Helicobacter pylori</i> Crosses Endothelia to Promote Neutrophil Adhesion In Vivo. Journal of Immunology, 2007, 178, 1312-1320.	0.4	87
95	Where and how do anthrax toxins exit endosomes to intoxicate host cells?. Trends in Microbiology, 2007, 15, 477-482.	3.5	24
96	VacA and HP-NAP, Ying and Yang of Helicobacter pylori-associated gastric inflammation. Clinica Chimica Acta, 2007, 381, 32-38.	0.5	24
97	A lysolecithin/fatty acid mixture promotes and then blocks neurotransmitter release at the Drosophila melanogaster larval neuromuscular junction. Neuroscience Letters, 2007, 416, 6-11.	1.0	16
98	Peculiar Binding of Botulinum Neurotoxins. ACS Chemical Biology, 2007, 2, 96-98.	1.6	21
99	The crystal structure of CagS from the <i>Helicobacter pylori</i> pathogenicity island. Proteins: Structure, Function and Bioinformatics, 2007, 69, 440-443.	1.5	10
100	Glycogen synthase kinase 3 activation is essential for the snake phospholipase A2 neurotoxin-induced secretion in chromaffin cells. European Journal of Neuroscience, 2007, 25, 2341-2348.	1.2	6
101	Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins \hat{f} A and C. European Journal of Neuroscience, 2007, 25, 2697-2704.	1.2	51
102	Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signalling. Cellular Microbiology, 2007, 9, 924-929.	1.1	68
103	The concerted action of the Helicobacter pylori cytotoxin VacA and of the v-ATPase proton pump induces swelling of isolated endosomes. Cellular Microbiology, 2007, 9, 1481-1490.	1.1	42
104	Traffic of Botulinum Toxins A and E in Excitatory and Inhibitory Neurons. Traffic, 2007, 8, 142-153.	1.3	87
105	Reversible skeletal neuromuscular paralysis induced by different lysophospholipids. FEBS Letters, 2006, 580, 6317-6321.	1.3	32
106	Streptococcus pneumoniae induces mast cell degranulation. International Journal of Medical Microbiology, 2006, 296, 325-329.	1.5	24
107	A molecular model of the Vibrio cholerae cytolysin transmembrane pore. Toxicon, 2006, 47, 35-40.	0.8	14
108	Presynaptic enzymatic neurotoxins. Journal of Neurochemistry, 2006, 97, 1534-1545.	2.1	100

#	Article	IF	Citations
109	Death of a chaperone. Nature, 2006, 443, 511-512.	13.7	9
110	Cell entry and cAMP imaging of anthrax edema toxin. EMBO Journal, 2006, 25, 5405-5413.	3.5	68
111	Entering neurons: botulinum toxins and synaptic vesicle recycling. EMBO Reports, 2006, 7, 995-999.	2.0	87
112	Clinical use of non-a botulinum toxins: Botulinum toxin type C and botulinum toxin type F. Neurotoxicity Research, 2006, 9, 127-131.	1.3	49
113	Botulinum neurotoxins and formalin-induced pain: Central vs. peripheral effects in mice. Brain Research, 2006, 1082, 124-131.	1.1	71
114	Interaction with CagF Is Required for Translocation of CagA into the Host via the Helicobacter pylori Type IV Secretion System. Infection and Immunity, 2006, 74, 273-281.	1.0	68
115	The Helicobacter pylori VacA cytotoxin activates RBL-2H3 cells by inducing cytosolic calcium oscillations. Cellular Microbiology, 2005, 7, 191-198.	1.1	41
116	SNARE complexes and neuroexocytosis: how many, how close?. Trends in Biochemical Sciences, 2005, 30, 367-372.	3.7	161
117	Crystal structure of antigen TpF1 from Treponema pallidum. Proteins: Structure, Function and Bioinformatics, 2005, 62, 827-830.	1.5	22
118	Anthrax toxins suppress T lymphocyte activation by disrupting antigen receptor signaling. Journal of Experimental Medicine, 2005, 201, 325-331.	4.2	152
119	Antiepileptic Effects of Botulinum Neurotoxin E. Journal of Neuroscience, 2005, 25, 1943-1951.	1.7	87
120	Anthrax Edema Toxin Cooperates with Lethal Toxin to Impair Cytokine Secretion during Infection of Dendritic Cells. Journal of Immunology, 2005, 174, 4934-4941.	0.4	136
121	Taipoxin Induces Synaptic Vesicle Exocytosis and Disrupts the Interaction of Synaptophysin I with VAMP2. Molecular Pharmacology, 2005, 67, 1901-1908.	1.0	28
122	Equivalent Effects of Snake PLA2 Neurotoxins and Lysophospholipid-Fatty Acid Mixtures. Science, 2005, 310, 1678-1680.	6.0	180
123	Internalization and Mechanism of Action of Clostridial Toxins in Neurons. NeuroToxicology, 2005, 26, 761-767.	1.4	98
124	Botulinal neurotoxins: revival of an old killer. Current Opinion in Pharmacology, 2005, 5, 274-279.	1.7	270
125	Potent inhibitors of anthrax lethal factor from green tea. EMBO Reports, 2004, 5, 418-422.	2.0	74
126	Stop the killer: how to inhibit the anthrax lethal factor metalloprotease. Trends in Biochemical Sciences, 2004, 29, 282-285.	3.7	32

#	Article	IF	Citations
127	Different types of botulinum toxin in humans. Movement Disorders, 2004, 19, S53-S59.	2.2	109
128	Snake presynaptic neurotoxins with phospholipase A2 activity induce punctate swellings of neurites and exocytosis of synaptic vesicles. Journal of Cell Science, 2004, 117, 3561-3570.	1.2	63
129	Tyrosine-728 and glutamic acid-735 are essential for the metalloproteolytic activity of the lethal factor of Bacillus anthracis. Biochemical and Biophysical Research Communications, 2004, 313, 496-502.	1.0	52
130	Presynaptic receptor arrays for clostridial neurotoxins. Trends in Microbiology, 2004, 12, 442-446.	3.5	147
131	The multiple cellular activities of the VacA cytotoxin of Helicobacter pylori. International Journal of Medical Microbiology, 2004, 293, 589-597.	1.5	31
132	The neutrophil-activating protein of Helicobacter pylori (HP-NAP) activates the MAPK pathway in human neutrophils. European Journal of Immunology, 2003, 33, 840-849.	1.6	48
133	Molecular and cellular mechanisms of action of the vacuolating cytotoxin (VacA) and neutrophil-activating protein (HP-NAP) virulence factors of Helicobacter pylori. Microbes and Infection, 2003, 5, 715-721.	1.0	97
134	Taipoxin induces Fâ€actin fragmentation and enhances release of catecholamines in bovine chromaffin cells. Journal of Neurochemistry, 2003, 85, 329-337.	2.1	36
135	VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes. FEBS Letters, 2003, 542, 132-136.	1.3	28
136	Toxicity of botulinum neurotoxins in central nervous system of mice. Toxicon, 2003, 41, 475-481.	0.8	39
137	G-CSF–stimulated Neutrophils Are a Prominent Source of Functional BLyS. Journal of Experimental Medicine, 2003, 197, 297-302.	4.2	284
138	Immunosuppressive and Proinflammatory Activities of the VacA Toxin of Helicobacter pylori. Journal of Experimental Medicine, 2003, 198, 1767-1771.	4.2	33
139	The Metalloproteolytic Activity of the Anthrax Lethal Factor Is Substrate-inhibited. Journal of Biological Chemistry, 2003, 278, 40075-40078.	1.6	48
140	Structure of Two Iron-binding Proteins from Bacillus anthracis. Journal of Biological Chemistry, 2002, 277, 15093-15098.	1.6	111
141	Characterization and Immunogenicity of the CagF Protein of the cag Pathogenicity Island of Helicobacter pylori. Infection and Immunity, 2002, 70, 6468-6470.	1.0	11
142	Botulinum neurotoxin serotypes A and C do not affect motor units survival in humans: an electrophysiological study by motor units counting. Clinical Neurophysiology, 2002, 113, 1258-1264.	0.7	37
143	Anthrax toxin: a tripartite lethal combination1. FEBS Letters, 2002, 531, 384-388.	1.3	116
144	Structure of the Neutrophil-activating Protein from Helicobacter pylori. Journal of Molecular Biology, 2002, 323, 125-130.	2.0	133

#	Article	IF	Citations
145	Problems in identifying microbial-derived neutrophil activators, focusing on Helicobacter pylori. Trends in Microbiology, 2002, 10, 14.	3.5	0
146	The Vibrio cholerae haemolysin anion channel is required for cell vacuolation and death. Cellular Microbiology, 2002, 4, 397-409.	1.1	39
147	Internalization and Proteolytic Action of Botulinum Toxins in CNS Neurons and Astrocytes. Journal of Neurochemistry, 2002, 73, 372-379.	2.1	62
148	Botulinum Neurotoxin E-Insensitive Mutants of SNAP-25 Fail to Bind VAMP but Support Exocytosis. Journal of Neurochemistry, 2002, 73, 2424-2433.	2.1	22
149	Screening inhibitors of anthrax lethal factor. Nature, 2002, 418, 386-386.	13.7	106
150	The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a potent stimulant of mast cells. European Journal of Immunology, 2002, 32, 671.	1.6	76
151	Site-Directed Mutagenesis Identifies Active-Site Residues of the Light Chain of Botulinum Neurotoxin Type A. Biochemical and Biophysical Research Communications, 2001, 288, 1231-1237.	1.0	53
152	How the Loop and Middle Regions Influence the Properties of Helicobacter pylori VacA Channels. Biophysical Journal, 2001, 81, 3204-3215.	0.2	15
153	Detoxification of a bacterial toxin by the toxin itself. Trends in Pharmacological Sciences, 2001, 22, 493-494.	4.0	4
154	Virulence factors of Helicobacter pylori. International Journal of Medical Microbiology, 2001, 290, 647-658.	1.5	44
155	Problems in assaying neutrophil activators. Trends in Microbiology, 2001, 9, 314-315.	3.5	1
156	Tetanus and botulinum neurotoxins: turning bad guys into good by research. Toxicon, 2001, 39, 27-41.	0.8	158
157	THEDESIGN OFVACCINESAGAINSTHELICOBACTER PYLORIANDTHEIRDEVELOPMENT. Annual Review of Immunology, 2001, 19, 523-563.	9.5	206
158	Neutrophil-activating protein (HP-NAP) versus ferritin (Pfr): comparison of synthesis in Helicobacter pylori. FEMS Microbiology Letters, 2001, 199, 143-149.	0.7	39
159	Living dangerously: how Helicobacter pylori survives in the human stomach. Nature Reviews Molecular Cell Biology, 2001, 2, 457-466.	16.1	447
160	Expression, crystallization and preliminary X-ray diffraction studies of recombinantBacillus anthracislethal factor. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1449-1451.	2.5	7
161	How do presynaptic PLA2 neurotoxins block nerve terminals?**This article is dedicated to C.C. Chang, C.Y. Lee and S. Thesleff for their seminal works on the activity of snake neurotoxins Trends in Biochemical Sciences, 2000, 25, 266-270.	3.7	103
162	Neurotoxins Affecting Neuroexocytosis. Physiological Reviews, 2000, 80, 717-766.	13.1	1,141

#	Article	IF	Citations
163	The Neutrophil-Activating Protein (Hp-Nap) of Helicobacter pylori Is a Protective Antigen and a Major Virulence Factor. Journal of Experimental Medicine, 2000, 191, 1467-1476.	4.2	279
164	Bacterial toxins with intracellular protease activity. Clinica Chimica Acta, 2000, 291, 189-199.	0.5	30
165	Tetanus Toxin Blocks the Exocytosis of Synaptic Vesicles Clustered at Synapses But Not of Synaptic Vesicles in Isolated Axons. Journal of Neuroscience, 1999, 19, 6723-6732.	1.7	83
166	The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Molecular Microbiology, 1999, 34, 238-246.	1.2	159
167	Towards deciphering the Helicobacter pylori cytotoxin. Molecular Microbiology, 1999, 34, 197-204.	1.2	65
168	Molecular and cellular activities of Helicobacter pyloripathogenic factors. FEBS Letters, 1999, 452, 16-21.	1.3	50
169	Inhibition of the vacuolating and anion channel activities of the VacA toxin ofHelicobacter pylori. FEBS Letters, 1999, 460, 221-225.	1.3	67
170	Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNÎ ³ -induced release of NO and TNFα. FEBS Letters, 1999, 462, 199-204.	1.3	272
171	Helicobacter pylori Vacuolating Toxin Forms Anion-Selective Channels in Planar Lipid Bilayers: Possible Implications for the Mechanism of Cellular Vacuolation. Biophysical Journal, 1999, 76, 1401-1409.	0.2	145
172	Recombinant and Truncated Tetanus Neurotoxin Light Chain: Cloning, Expression, Purification, and Proteolytic Activity. Protein Expression and Purification, 1999, 15, 221-227.	0.6	14
173	Different time courses of recovery after poisoning with botulinum neurotoxin serotypes A and E in humans. Neuroscience Letters, 1998, 256, 135-138.	1.0	184
174	Protein toxins and membrane transport. Current Opinion in Cell Biology, 1998, 10, 530-536.	2.6	46
175	TPA and butyrate increase cell sensitivity to the vacuolating toxin ofHelicobacter pylori. FEBS Letters, 1998, 436, 218-222.	1.3	12
176	The Acid Activation of Helicobacter pylori Toxin VacA: Structural and Membrane Binding Studies. Biochemical and Biophysical Research Communications, 1998, 248, 334-340.	1.0	84
177	Anthrax Lethal Factor Cleaves the N-Terminus of MAPKKs and Induces Tyrosine/Threonine Phosphorylation of MAPKs in Cultured Macrophages. Biochemical and Biophysical Research Communications, 1998, 248, 706-711.	1.0	404
178	Cell vacuolization induced by Helicobacter pylori VacA toxin: cell line sensitivity and quantitative estimation. Toxicology Letters, 1998, 99, 109-115.	0.4	31
179	Selective Inhibition of li-dependent Antigen Presentation by Helicobacter pylori Toxin VacA. Journal of Experimental Medicine, 1998, 187, 135-140.	4.2	270
180	Identification of the <i>Helicobacter pylori</i> VacA Toxin Domain Active in the Cell Cytosol. Infection and Immunity, 1998, 66, 6014-6016.	1.0	102

#	Article	IF	CITATIONS
181	The therapeutic use of botulinum toxin. Expert Opinion on Investigational Drugs, 1997, 6, 1383-1394.	1.9	21
182	Effect of Helicobacter pylori Vacuolating Toxin on Maturation and Extracellular Release of Procathepsin D and on Epidermal Growth Factor Degradation. Journal of Biological Chemistry, 1997, 272, 25022-25028.	1.6	111
183	Vacuoles Induced by Helicobacter pylori Toxin Contain Both Late Endosomal and Lysosomal Markers. Journal of Biological Chemistry, 1997, 272, 25339-25344.	1.6	174
184	The interaction of synaptic vesicle-associated membrane protein/synaptobrevin with botulinum neurotoxins D and F. FEBS Letters, 1997, 409, 339-342.	1.3	41
185	Botulinum neurotoxin types A and E require the SNARE motif in SNAP-25 for proteolysis. FEBS Letters, 1997, 418, 1-5.	1.3	113
186	Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neuroscience Letters, 1997, 224, 91-94.	1.0	132
187	Peroxynitrite and Nitric Oxide Donors Induce Neuronal Apoptosis by Eliciting Autocrine Excitotoxicity. European Journal of Neuroscience, 1997, 9, 1488-1498.	1.2	130
188	Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Molecular Microbiology, 1997, 26, 665-674.	1.2	128
189	Italian Basic and Applied Research. Science, 1997, 276, 1773-1776.	6.0	2
190	Clostridial Neurotoxins and Substrate Proteolysis in Intact Neurons. Journal of Biological Chemistry, 1996, 271, 7694-7699.	1.6	169
191	The vacuolar ATPase proton pump is required for the cytotoxicity ofBacillus anthracislethal toxin. FEBS Letters, 1996, 386, 161-164.	1.3	47
192	Substrate residues N-terminal to the cleavage site of botulinum type B neurotoxin play a role in determining the specificity of its endopeptidase activity. FEBS Letters, 1996, 386, 133-136.	1.3	32
193	Botulinum neurotoxins: mechanism of action and therapeutic applications. Trends in Molecular Medicine, 1996, 2, 418-424.	2.6	74
194	X-ray Absorption Spectroscopy Study of Zinc Coordination in Tetanus Neurotoxin, Astacin, Alkaline Protease and Thermolysin. FEBS Journal, 1996, 235, 606-612.	0.2	19
195	Common and distinct fusion proteins in axonal growth and transmitter release., 1996, 367, 222-234.		192
196	Structural Determinants of the Specificity for Synaptic Vesicle-associated Membrane Protein/Synaptobrevin of Tetanus and Botulinum Type B and G Neurotoxins. Journal of Biological Chemistry, 1996, 271, 20353-20358.	1.6	107
197	Botulinum Neurotoxin Type C Cleaves a Single Lys-Ala Bond within the Carboxyl-terminal Region of Syntaxins. Journal of Biological Chemistry, 1995, 270, 10566-10570.	1.6	255
198	Structure and function of tetanus and botulinum neurotoxins. Quarterly Reviews of Biophysics, 1995, 28, 423-472.	2.4	427

#	Article	IF	CITATIONS
199	[39] Tetanus and botulism neurotoxins: Isolation and assay. Methods in Enzymology, 1995, 248, 643-652.	0.4	77
200	Lipid Interaction of the 37-kDa and 58-kDa Fragments of the Helicobacter Pylori Cytotoxin. FEBS Journal, 1995, 234, 947-952.	0.2	56
201	Similarities between the lethal factor of Bacillus anthracis and leukotriene A4 hydrolase. Molecular Microbiology, 1995, 18, 991-992.	1.2	7
202	Low pH Activates the Vacuolating Toxin of Helicobacter pylori, Which Becomes Acid and Pepsin Resistant. Journal of Biological Chemistry, 1995, 270, 23937-23940.	1.6	197
203	Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell, 1995, 81, 571-580.	13.5	235
204	Phosphorylation of VAMP/Synaptobrevin in Synaptic Vesicles by Endogenous Protein Kinases. Journal of Neurochemistry, 1995, 65, 1712-1720.	2.1	90
205	Structural Studies on the Zinc-endopeptidase Light Chain of Tetanus Neurotoxin. FEBS Journal, 1995, 229, 61-69.	0.2	21
206	Clostridial neurotoxins as tools to investigate the molecular events of neurotransmitter release. Seminars in Cell Biology, 1994, 5, 221-229.	3.5	97
207	Unravelling the pathogenic role of Helicobacter pylori in peptic ulcer: Potential new therapies and vaccines. Trends in Biotechnology, 1994, 12, 420-426.	4.9	82
208	Zinc content of theBacillus anthracislethal factor. FEMS Microbiology Letters, 1994, 124, 343-348.	0.7	57
209	SNARE motif and neurotoxins. Nature, 1994, 372, 415-416.	13.7	196
210	Mechanism of action of tetanus and botulinum neurotoxins. Molecular Microbiology, 1994, 13, 1-8.	1.2	537
211	Tetanus and Botulinum Neurotoxins Are Zinc Proteases Specific for Components of the Neuroexocytosis Apparatus. Annals of the New York Academy of Sciences, 1994, 710, 65-75.	1.8	137
212	Response from Schiavo and Montecucco. Trends in Microbiology, 1994, 2, 69.	3.5	2
213	Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Letters, 1994, 346, 92-98.	1.3	211
214	Molecular mechanisms of action of bacterial protein toxins. Molecular Aspects of Medicine, 1994, 15, 79-193.	2.7	84
215	Neurotransmission and secretion. Nature, 1993, 364, 581-582.	13.7	50
216	Antibodies Against Rat Brain Vesicle-Associated Membrane Protein (Synaptobrevin) Prevent Inhibition of Acetylcholine Release by Tetanus Toxin or Botulinum Neurotoxin Type B. Journal of Neurochemistry, 1993, 61, 1175-1178.	2.1	44

#	Article	IF	Citations
217	Botulinum A Like Type B and Tetanus Toxins Fulfils Criteria for Being a Zinc-Dependent Protease. Journal of Neurochemistry, 1993, 61, 2338-2341.	2.1	69
218	Cell vacuolization induced byHelicobacter pylori: Inhibition by bafilomycins A1, B1, C1 and D. FEMS Microbiology Letters, 1993, 113, 155-159.	0.7	28
219	Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Letters, 1993, 335, 99-103.	1.3	401
220	Novel targets and catalytic activities of bacterial protein toxins. Trends in Microbiology, 1993, 1, 170-174.	3.5	39
221	Tetanus and botulism neurotoxins: a new group of zinc proteases. Trends in Biochemical Sciences, 1993, 18, 324-327.	3.7	241
222	Lipid interaction of Tetanus neurotoxin A calorimetric and fluorescence spectroscopy study. FEBS Letters, 1992, 309, 107-110.	1.3	17
223	Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature, 1992, 359, 832-835.	13.7	1,750
224	Tetanus toxin receptor Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC 12 cells. FEBS Letters, 1991, 290, 227-230.	1.3	46
225	Lipid interaction of diphtheria toxin and mutants. A study with phospholipid and protein monolayers. FEBS Journal, 1991, 197, 481-486.	0.2	16
226	On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers. FEBS Journal, 1991, 199, 705-711.	0.2	32
227	Determination of diphtheria toxin neutralizing antibody titers with a cell protein synthesis inhibition assay. Medical Microbiology and Immunology, 1991, 180, 29-35.	2.6	5
228	Histidine-21 is involved in diphtheria toxin NAD+ binding. Toxicon, 1990, 28, 631-635.	0.8	21
229	Selective extraction of haemagglutinin and matrix protein from Sendai virions by employing trifluoperazine as a detergent. FEBS Letters, 1988, 238, 171-174.	1.3	6
230	MP17, a fiber-specific intrinsic membrane protein from mammalian eye lens. Current Eye Research, 1988, 7, 207-219.	0.7	56
231	[49] Photoreactive lipids for the study of membrane-penetrating toxins. Methods in Enzymology, 1988, 165, 347-357.	0.4	12
232	Diphtheria toxin and its mutantcrm197 differ in their interaction with lipids. FEBS Letters, 1987, 215, 73-78.	1.3	33
233	Photolabeling of the integral proteins of skeletal muscle sarcoplasmic reticulum: Comparison of junctional and nonjunctional membrane fractions. Archives of Biochemistry and Biophysics, 1987, 253, 138-145.	1.4	16
234	Lipid interaction of diphtheria toxin and mutants with altered fragment B. 2. Hydrophobic photolabelling and cell intoxication. FEBS Journal, 1987, 169, 637-644.	0.2	68

#	Article	IF	CITATIONS
235	Hydrophobic photolabelling of pertussis toxin subunits interacting with lipids. FEBS Letters, 1986, 194, 301-304.	1.3	26
236	How do tetanus and botulinum toxins bind to neuronal membranes?. Trends in Biochemical Sciences, 1986, 11, 314-317.	3.7	374
237	Tetanus toxin is labeled with photoactivatable phospholipids at low pH. Biochemistry, 1986, 25, 919-924.	1.2	55
238	Helical packing in the hydrophobic sector of cytochrome c oxidase. Journal of Inorganic Biochemistry, 1985, 23, 177-182.	1.5	8
239	Membrane Topology of ATP Synthase from Bovine Heart Mitochondira and Escherichia coli. FEBS Journal, 1983, 132, 189-194.	0.2	50
240	Bilayer thickness and enzymatic activity in the mitochondrial cytochromecoxidase and ATPase complex. FEBS Letters, 1982, 144, 145-148.	1.3	71
241	Different polypeptides of bovine heart cytochrome c oxidase are in contact with cytochrome c. FEBS Letters, 1982, 150, 49-53.	1.3	36
242	Labelling of the hydrophobic domain of the Na+,K+-ATPase. FEBS Letters, 1981, 128, 17-21.	1.3	21
243	Effect of local anaesthetics on lymphocyte capping and energy metabolism. Biochemical Pharmacology, 1981, 30, 2989-2992.	2.0	15
244	Hydrophobie Photolabelling of Sodium-plus-Potassium Ion-Stimulated Adenosine Triphosphatase. Biochemical Society Transactions, 1979, 7, 952-953.	1.6	1
245	Hydrophobic Labelling of Bovine Heart Cytochrome <i>c</i> Oxidase with an Azidophosphatidylcholine. Biochemical Society Transactions, 1979, 7, 156-159.	1.6	10
246	Labelling of the Subunits of the Mitochondrial Adenosine Triphosphatase Complex in Contact with the Lipid Bilayer. Biochemical Society Transactions, 1979, 7, 954-955.	1.6	4
247	Interaction of membranous cytochrome b 5 with arylazidophospholipids. FEBS Letters, 1979, 106, 317-320.	1.3	21
248	Probes for energy transduction in membranes. Journal of Bioenergetics and Biomembranes, 1976, 8, 257-269.	1.0	11
249	The use of acetylated ferricytochrome C for the detection of superoxide radicals produced in biological membranes. Biochemical and Biophysical Research Communications, 1975, 65, 597-603.	1.0	345