
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11304452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac Na+-Ca2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. Science China Life Sciences, 2021, 64, 255-268.	4.9	2
2	Cell surface markers for immunophenotyping human pluripotent stem cell-derived cardiomyocytes. Pflugers Archiv European Journal of Physiology, 2021, 473, 1023-1039.	2.8	6
3	Importance of evaluating protein glycosylation in pluripotent stem cell-derived cardiomyocytes for research and clinical applications. Pflugers Archiv European Journal of Physiology, 2021, 473, 1041-1059.	2.8	8
4	Maturing heart muscle cells: Mechanisms and transcriptomic insights. Seminars in Cell and Developmental Biology, 2021, 119, 49-60.	5.0	13
5	Special issue on recent progress with hPSC-derived cardiovascular cells for organoids, engineered myocardium, drug discovery, disease models, and therapy. Pflugers Archiv European Journal of Physiology, 2021, 473, 983-988.	2.8	0
6	Altered Electrical, Biomolecular, and Immunologic Phenotypes in a Novel Patient-Derived Stem Cell Model of Desmoglein-2 Mutant ARVC. Journal of Clinical Medicine, 2021, 10, 3061.	2.4	21
7	The cell surface marker CD36 selectively identifies matured, mitochondria-rich hPSC-cardiomyocytes. Cell Research, 2020, 30, 626-629.	12.0	36
8	Induced pluripotent stem cell-derived vascular smooth muscle cells. Vascular Biology (Bristol,) Tj ETQqO O O rgBT	/Oyerlock 3.2	10 Tf 50 462
9	Are These Cardiomyocytes? Protocol Development Reveals Impact of Sample Preparation on the Accuracy of Identifying Cardiomyocytes by Flow Cytometry. Stem Cell Reports, 2019, 12, 395-410.	4.8	14
10	Functional Properties of Engineered Heart Slices Incorporating Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cell Reports, 2019, 12, 982-995.	4.8	24

11	Organic Electrochemical Transistor Arrays for In Vitro Electrophysiology Monitoring of 2D and 3D Cardiac Tissues. Advanced Biology, 2019, 3, e1800248.	3.0	35
12	Integrated transcriptomic and regulatory network analyses identify microRNA-200c as a novel repressor of human pluripotent stem cell-derived cardiomyocyte differentiation and maturation. Cardiovascular Research, 2018, 114, 894-906.	3.8	44
13	Discovery of Surface Target Proteins Linking Drugs, Molecular Markers, Gene Regulation, Protein Networks, and Disease by Using a Web-Based Platform Targets-search. Methods in Molecular Biology, 2018, 1722, 331-344.	0.9	2
14	Immunophenotyping of Live Human Pluripotent Stem Cells by Flow Cytometry. Methods in Molecular Biology, 2018, 1722, 127-149.	0.9	6
15	Mitochondrial Ca2+ flux modulates spontaneous electrical activity in ventricular cardiomyocytes. PLoS ONE, 2018, 13, e0200448.	2.5	22
16	An integrative method to decode regulatory logics in gene transcription. Nature Communications, 2017, 8, 1044.	12.8	19
17	Concise Review: Cell Surface <i>N</i> -Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets. Stem Cells Translational Medicine, 2017, 6, 131-138.	3.3	21
18	Ascorbic acid promotes cardiomyogenesis through SMAD1 signaling in differentiating mouse	2.5	13

embryonic stem cells. PLoS ONE, 2017, 12, e0188569. 18

#	Article	IF	CITATIONS
19	Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of <i>pmaip1</i> . Stem Cells, 2016, 34, 1527-1540.	3.2	16
20	Consensus Comparative Analysis of Human Embryonic Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2015, 10, e0125442.	2.5	1
21	Inhibition of an NAD+ Salvage Pathway Provides Efficient and Selective Toxicity to Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2015, 4, 483-493.	3.3	24
22	Proteomic Analysis of Human Pluripotent Stem Cell–Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation. Circulation: Cardiovascular Genetics, 2015, 8, 427-436.	5.1	61
23	A Mass Spectrometric-Derived Cell Surface Protein Atlas. PLoS ONE, 2015, 10, e0121314.	2.5	356
24	Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2014, 5, 117.	5.5	97
25	PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data. Nucleic Acids Research, 2014, 42, W130-W136.	14.5	34
26	High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry. Journal of Visualized Experiments, 2014, , 52010.	0.3	56
27	Nâ€glycoprotein surfaceomes of four developmentally distinct mouse cell types. Proteomics - Clinical Applications, 2014, 8, 603-609.	1.6	12
28	Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2014, 5, 17.	5.5	67
29	A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets. Stem Cell Reports, 2014, 3, 185-203.	4.8	73
30	Abstract 15961: Syncytial Model of Type 2 Long QT Syndrome Derived From Human iPS Cells Can Be Paced and Responds to Ikr Block and Activation. Circulation, 2014, 130, .	1.6	0
31	Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Research and Therapy, 2013, 4, 97.	5.5	31
32	Cardiomyocytes derived from pluripotent stem cells: Progress and prospects from China. Experimental Cell Research, 2013, 319, 120-125.	2.6	2
33	Epigenetic Regulation of the Electrophysiological Phenotype of Human Embryonic Stem Cell-Derived Ventricular Cardiomyocytes: Insights for Driven Maturation and Hypertrophic Growth. Stem Cells and Development, 2013, 22, 2678-2690.	2.1	25
34	Mitogen-Activated Protein Kinase-Activated Protein Kinases 2 and 3 Regulate SERCA2a Expression and Fiber Type Composition To Modulate Skeletal Muscle and Cardiomyocyte Function. Molecular and Cellular Biology, 2013, 33, 2586-2602.	2.3	43
35	Transcriptome-Guided Functional Analyses Reveal Novel Biological Properties and Regulatory Hierarchy of Human Embryonic Stem Cell-Derived Ventricular Cardiomyocytes Crucial for Maturation. PLoS ONE, 2013, 8, e77784.	2.5	35
36	A Cell Surfaceome Map for Immunophenotyping and Sorting Pluripotent Stem Cells. Molecular and Cellular Proteomics, 2012, 11, 303-316.	3.8	58

#	Article	IF	CITATIONS
37	Cardiac ryanodine receptors control heart rate and rhythmicity in adult mice. Cardiovascular Research, 2012, 96, 372-380.	3.8	64
38	Linkage of cardiac gene expression profiles and ETS2 with lifespan variability in rats. Aging Cell, 2012, 11, 350-359.	6.7	12
39	Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells. Progress in Biophysics and Molecular Biology, 2012, 110, 178-195.	2.9	79
40	Human ESC/iPSC-based â€~omics' and bioinformatics for translational research. Drug Discovery Today: Disease Models, 2012, 9, e161-e170.	1.2	8
41	The B-MYB Transcriptional Network Guides Cell Cycle Progression and Fate Decisions to Sustain Self-Renewal and the Identity of Pluripotent Stem Cells. PLoS ONE, 2012, 7, e42350.	2.5	35
42	Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. International Journal of Cardiology, 2011, 147, 95-111.	1.7	34
43	Rhythmic beating of stem cell-derived cardiac cells requires dynamic coupling of electrophysiology and Ca cycling. Journal of Molecular and Cellular Cardiology, 2011, 50, 66-76.	1.9	33
44	Embryonic Stem Cell-Derived Cardiomyocyte Heterogeneity and the Isolation of Immature and Committed Cells for Cardiac Remodeling and Regeneration. Stem Cells International, 2011, 2011, 1-10.	2.5	25
45	Distinct Roles of MicroRNA-1 and -499 in Ventricular Specification and Functional Maturation of Human Embryonic Stem Cell-Derived Cardiomyocytes. PLoS ONE, 2011, 6, e27417.	2.5	153
46	Molecular mechanisms of cardiomyocyte aging. Clinical Science, 2011, 121, 315-329.	4.3	76
47	Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics, 2011, 11, 3947-3961.	2.2	20
48	Long-Term Improvement in Postinfarct Left Ventricular Global and Regional Contractile Function Is Mediated by Embryonic Stem Cell–Derived Cardiomyocytes. Circulation: Cardiovascular Imaging, 2011, 4, 33-41.	2.6	45
49	Expanding the mouse embryonic stem cell proteome: Combining three proteomic approaches. Proteomics, 2010, 10, 2728-2732.	2.2	17
50	Pluripotency of human embryonic and induced pluripotent stem cells for cardiac and vascular regeneration. Thrombosis and Haemostasis, 2010, 104, 23-29.	3.4	13
51	Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography. Developmental Dynamics, 2009, 238, 1964-1973.	1.8	32
52	Stem cell pluripotency: A cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. Journal of Cellular Physiology, 2009, 221, 10-17.	4.1	64
53	The Mouse C2C12 Myoblast Cell Surface N-Linked Glycoproteome. Molecular and Cellular Proteomics, 2009, 8, 2555-2569.	3.8	68
54	The golden age of cardiomyogenic stem cells: avoiding a fool's fate. Expert Review of Cardiovascular Therapy, 2009, 7, 1-4.	1.5	3

#	Article	IF	CITATIONS
55	Pluripotency of embryonic stem cells. Cell and Tissue Research, 2008, 331, 5-22.	2.9	56
56	A novel role for proteomics in the discovery of cellâ€surface markers on stem cells: Scratching the surface. Proteomics - Clinical Applications, 2008, 2, 892-903.	1.6	37
57	Cardiomyogenic stem and progenitor cell plasticity and the dissection of cardiopoiesis. Journal of Molecular and Cellular Cardiology, 2008, 45, 475-494.	1.9	31
58	Linkage of Pluripotent Stem Cell- Associated Transcripts to Regulatory Gene Networks. Cells Tissues Organs, 2008, 188, 31-45.	2.3	9
59	B-MYB Is Essential for Normal Cell Cycle Progression and Chromosomal Stability of Embryonic Stem Cells. PLoS ONE, 2008, 3, e2478.	2.5	96
60	Enhanced Proliferation of Monolayer Cultures of Embryonic Stem (ES) Cell-Derived Cardiomyocytes Following Acute Loss of Retinoblastoma. PLoS ONE, 2008, 3, e3896.	2.5	24
61	AGEMAP: A Gene Expression Database for Aging in Mice. PLoS Genetics, 2007, 3, e201.	3.5	355
62	The Pro-angiogenic Cytokine Pleiotrophin Potentiates Cardiomyocyte Apoptosis through Inhibition of Endogenous AKT/PKB Activity. Journal of Biological Chemistry, 2007, 282, 34984-34993.	3.4	34
63	WNT-conditioned media differentially affect the proliferation and differentiation of cord blood-derived CD133+ cells in vitro. Differentiation, 2007, 75, 100-111.	1.9	41
64	Serial Analysis of Gene Expression (SAGE). Methods in Molecular Biology, 2007, 366, 41-59.	0.9	8
65	Signals from Embryonic Fibroblasts Induce Adult Intestinal Epithelial Cells to Form Nestin-Positive Cells with Proliferation and Multilineage Differentiation Capacity In Vitro. Stem Cells, 2006, 24, 2085-2097.	3.2	18
66	SAGE Analysis to Identify Embryonic Stem Cell-Predominant Transcripts. , 2006, 329, 195-222.		3
67	Crucial role of the sarcoplasmic reticulum in the developmental regulation of Ca 2+ transients and contraction in cardiomyocytes derived from embryonic stem cells. FASEB Journal, 2006, 20, 181-183.	0.5	71
68	Cardiomyocytes Derived From Embryonic Stem Cells. , 2005, 108, 417-436.		15
69	Somatic Stem Cell Marker Promininâ€1/CD133 Is Expressed in Embryonic Stem Cell–Derived Progenitors. Stem Cells, 2005, 23, 791-804.	3.2	122
70	Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. Journal of Cellular and Molecular Medicine, 2005, 9, 804-817.	3.6	72
71	Aging-associated changes in cardiac gene expression. Cardiovascular Research, 2005, 66, 194-204.	3.8	37
72	Embryonic Stem Cells: Prospects for Developmental Biology and Cell Therapy. Physiological Reviews, 2005, 85, 635-678.	28.8	674

#	Article	IF	CITATIONS
73	Twoâ€dimensional gel electrophoresis database of murine R1 embryonic stem cells. Proteomics, 2004, 4, 3813-3832.	2.2	54
74	Ouabain treatment is associated with upregulation of phosphatase inhibitor-1 and Na+/Ca2+-exchanger and β-adrenergic sensitization in rat hearts. Biochemical and Biophysical Research Communications, 2004, 318, 219-226.	2.1	5
75	The new role of SAGE in gene discovery. Trends in Biotechnology, 2003, 21, 55-57.	9.3	35
76	Cardiomyocytes purified from differentiated embryonic stem cells exhibit characteristics of early chamber myocardium. Journal of Molecular and Cellular Cardiology, 2003, 35, 1461-1472.	1.9	92
77	Can transcriptome size be estimated from SAGE catalogs?. Bioinformatics, 2003, 19, 443-448.	4.1	33
78	Sex- and age-dependent human transcriptome variability: Implications for chronic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2754-2759.	7.1	96
79	Sp1 and Sp3 transcription factors are required for trans-activation of the human SERCA2 promoter in cardiomyocytes. Cardiovascular Research, 2003, 60, 347-354.	3.8	38
80	ES Cell Differentiation to the Cardiac Lineage. Methods in Enzymology, 2003, 365, 228-241.	1.0	13
81	Transcriptome Analysis of Mouse Stem Cells and Early Embryos. PLoS Biology, 2003, 1, e74.	5.6	156
82	Embryonic Stem Cells as a Model to Study Cardiac, Skeletal Muscle, and Vascular Smooth Muscle Cell Differentiation. , 2002, 185, 127-156.		172
83	The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9225-9230.	7.1	114
84	Myocardial aging and embryonic stem cell biology. Advances in Cell Aging and Gerontology, 2002, , 141-176.	0.1	4
85	SAGE Identification of Gene Transcripts with Profiles Unique to Pluripotent Mouse R1 Embryonic Stem Cells. Genomics, 2002, 79, 169-176.	2.9	107
86	A Quantitative and Validated SAGE Transcriptome Reference for Adult Mouse Heart. Genomics, 2002, 80, 213-222.	2.9	35
87	SAGE identification of differentiation responsive genes in P19 embryonic cells induced to form cardiomyocytes in vitro. Mechanisms of Development, 2002, 117, 25-74.	1.7	54
88	Differentiation of Pluripotent Embryonic Stem Cells Into Cardiomyocytes. Circulation Research, 2002, 91, 189-201.	4.5	678
89	Analysis of altered genomic expression profiles in the senescent and diseased myocardium using cDNA microarrays. European Journal of Heart Failure, 2002, 4, 687-697.	7.1	13
90	Galanin and galanin receptors in embryonic stem cells: accidental or essential?. Neuropeptides, 2002, 36, 239-245.	2.2	33

#	Article	IF	CITATIONS
91	A distant upstream region of the rat multipartite Na + –Ca 2+ exchanger NCX1 gene promoter is sufficient to confer cardiac-specific expression. Mechanisms of Development, 2001, 109, 267-279.	1.7	27
92	Low-dose ramipril treatment improves relaxation and calcium cycling after established cardiac hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1029-H1038.	3.2	12
93	Discovering altered genomic expression patterns in heart: transcriptome determination by serial analysis of gene expression. European Journal of Heart Failure, 2001, 3, 271-281.	7.1	14
94	Can Exogenous Stem Cells Be Used in Transplantation?. Cells Tissues Organs, 1999, 165, 237-245.	2.3	22
95	Sub-Antihypertensive Doses of Ramipril Normalize Sarcoplasmic Reticulum Calcium ATPase Expression and Function following Cardiac Hypertrophy in Rats. Journal of Molecular and Cellular Cardiology, 1998, 30, 2683-2694.	1.9	23
96	Clenbuterol induces cardiac hypertrophy with normal functional, morphological and molecular features. Cardiovascular Research, 1998, 37, 115-122.	3.8	91
97	The sarco(endo)plasmic reticulum Ca2+-ATPase gene is regulated at the transcriptional level during compensated left ventricular hypertrophy in the rat. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1997, 320, 963-969.	0.8	22
98	Pharmacological Modulation of Pressure-Overload Cardiac Hypertrophy. Circulation, 1997, 96, 2239-2246.	1.6	62
99	Regulation of expression of contractile proteins with cardiac hypertrophy and failure. Molecular and Cellular Biochemistry, 1996, 157, 181-9.	3.1	6
100	Endothelin-1 Is Involved in Norepinephrine-Induced Ventricular Hypertrophy In Vivo. Circulation, 1996, 93, 2068-2079.	1.6	110
101	Cardiac Development. Medical Intelligence Unit, 1995, , 25-78.	0.2	1
102	Gene Expression in Cardiac Hypertrophy. Medical Intelligence Unit, 1995, , 165-236.	0.2	1
103	Clenbuterol Induces Hypertrophy of the Latissimus Dorsi Muscle and Heart in the Rat With Molecular and Phenotypic Changes. Circulation, 1995, 92, 483-489.	1.6	52
104	Patterns of Expression of Sarcoplasmic Reticulum Ca 2+ -ATPase and Phospholamban mRNAs During Rat Heart Development. Circulation Research, 1995, 76, 616-625.	4.5	92
105	Overview: The Molecular Phenotype of Normal and Impaired Relaxation. , 1994, , 3-6.		0
106	The molecular biology of heart failure. Journal of the American College of Cardiology, 1993, 22, A30-A33.	2.8	45
107	Gene expression in cardiac hypertrophy. Trends in Cardiovascular Medicine, 1992, 2, 176-182.	4.9	68
108	Characterization and expression of the rat heart sarcoplasmic reticulum Ca2+ -ATPase mRNA. FEBS Letters, 1989, 249, 35-41.	2.8	98