Irene M Ghobrial

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1130387/publications.pdf

Version: 2024-02-01

313 papers 10,095 citations

38742 50 h-index 92 g-index

318 all docs

318 does citations

318 times ranked

12476 citing authors

#	Article	IF	CITATIONS
1	Ibrutinib in Previously Treated Waldenström's Macroglobulinemia. New England Journal of Medicine, 2015, 372, 1430-1440.	27.0	810
2	The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood, 2022, 140, 1229-1253.	1.4	512
3	Genomic complexity of multiple myeloma and its clinical implications. Nature Reviews Clinical Oncology, 2017, 14, 100-113.	27.6	413
4	CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood, 2009, 113, 4341-4351.	1.4	398
5	Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nature Chemical Biology, 2019, 15, 681-689.	8.0	275
6	Bone marrow niches in haematological malignancies. Nature Reviews Cancer, 2020, 20, 285-298.	28.4	270
7	Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood, 2012, 119, 5782-5794.	1.4	268
8	The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19–infected patients. Blood, 2020, 135, 1912-1915.	1.4	253
9	Engineered nanomedicine for myeloma and bone microenvironment targeting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10287-10292.	7.1	234
10	Response assessment in <scp>W</scp> aldenström macroglobulinaemia: update from the <scp>VI</scp> th <scp>I</scp> nternational <scp>W</scp> orkshop. British Journal of Haematology, 2013, 160, 171-176.	2.5	226
11	Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood, 2017, 129, 2429-2436.	1.4	214
12	Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nature Cancer, 2020, 1 , 493-506.	13.2	209
13	C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood, 2014, 123, 4120-4131.	1.4	187
14	Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma. New England Journal of Medicine, 2022, 387, 132-147.	27.0	173
15	Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenström's macroglobulinemia. Blood, 2014, 124, 503-510.	1.4	168
16	Myeloma as a model for the process of metastasis: implications for therapy. Blood, 2012, 120, 20-30.	1.4	163
17	Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development. Cell, 2020, 183, 1714-1731.e10.	28.9	163
18	Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus. Blood, 2014, 124, 1404-1411.	1.4	138

#	Article	IF	CITATIONS
19	Regulation of microRNAs in cancer metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 255-265.	7.4	132
20	CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation. Cell Reports, 2015, 12, 622-635.	6.4	123
21	The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nature Reviews Clinical Oncology, 2018, 15, 219-233.	27.6	120
22	Multiple Myeloma Mesenchymal Stem Cells: Characterization, Origin, and Tumor-Promoting Effects. Clinical Cancer Research, 2012, 18, 342-349.	7.0	118
23	A phase 2 study of modified lenalidomide, bortezomib and dexamethasone in transplantâ€ineligible multiple myeloma. British Journal of Haematology, 2018, 182, 222-230.	2.5	118
24	SDF-1 Inhibition Targets the Bone Marrow Niche for Cancer Therapy. Cell Reports, 2014, 9, 118-128.	6.4	116
25	Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. Journal of Clinical Oncology, 2020, 38, 2380-2389.	1.6	110
26	Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood, 2014, 124, 3250-3259.	1.4	109
27	Genomic Landscape of Waldenström Macroglobulinemia and Its Impact on Treatment Strategies. Journal of Clinical Oncology, 2020, 38, 1198-1208.	1.6	103
28	Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nature Communications, 2020, 11, 2996.	12.8	98
29	Long-Term Follow-Up of Ibrutinib Monotherapy in Symptomatic, Previously Treated Patients With Waldenström Macroglobulinemia. Journal of Clinical Oncology, 2021, 39, 565-575.	1.6	98
30	The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood, 2014, 124, 1765-1776.	1.4	97
31	The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Reports, 2017, 19, 218-224.	6.4	92
32	The cancer glycome: Carbohydrates as mediators of metastasis. Blood Reviews, 2015, 29, 269-279.	5.7	91
33	<scp>TAK</scp> â€228 (formerly <scp>MLN</scp> 0128), an investigational oral dual <scp>TORC</scp> 1/2 inhibitor: A phase I dose escalation study in patients with relapsed or refractory multiple myeloma, nonâ€Hodgkin lymphoma, or Waldenström's macroglobulinemia. American Journal of Hematology, 2016, 91, 400-405.	4.1	89
34	Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet Oncology, The, 2011, 12, 263-272.	10.7	88
35	Central nervous system involvement by Waldenström macroglobulinaemia (Bingâ€Neel syndrome): a multiâ€institutional retrospective study. British Journal of Haematology, 2016, 172, 709-715.	2.5	87
36	Blocking IFNAR1 inhibits multiple myeloma–driven Treg expansion and immunosuppression. Journal of Clinical Investigation, 2018, 128, 2487-2499.	8.2	80

#	Article	IF	Citations
37	Dissecting racial disparities in multiple myeloma. Blood Cancer Journal, 2020, 10, 19.	6.2	79
38	Role of endothelial progenitor cells in cancer progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 26-39.	7.4	70
39	Antibody-Dependent Cellular Phagocytosis by Macrophages is a Novel Mechanism of Action of Elotuzumab. Molecular Cancer Therapeutics, 2018, 17, 1454-1463.	4.1	70
40	Development of extramedullary myeloma in the era of novel agents: no evidence of increased risk with lenalidomide–bortezomib combinations. British Journal of Haematology, 2015, 169, 843-850.	2.5	66
41	A Phase Ib/II Trial of the First-in-Class Anti-CXCR4 Antibody Ulocuplumab in Combination with Lenalidomide or Bortezomib Plus Dexamethasone in Relapsed Multiple Myeloma. Clinical Cancer Research, 2020, 26, 344-353.	7.0	66
42	Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. British Journal of Haematology, 2015, 169, 851-858.	2.5	63
43	Genome instability in multiple myeloma. Leukemia, 2020, 34, 2887-2897.	7.2	63
44	Multiple Myeloma and the immune microenvironment. Current Cancer Drug Targets, 2017, 17, 1-1.	1.6	59
45	Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenstr¶m macroglobulinaemia. British Journal of Haematology, 2017, 177, 717-725.	2.5	58
46	Single-cell profiling of tumour evolution in multiple myeloma — opportunities for precision medicine. Nature Reviews Clinical Oncology, 2022, 19, 223-236.	27.6	58
47	Monoclonal gammopathy of undetermined significance. Blood, 2019, 133, 2484-2494.	1.4	57
48	Triply Loaded Nitroxide Brush-Arm Star Polymers Enable Metal-Free Millimetric Tumor Detection by Magnetic Resonance Imaging. ACS Nano, 2018, 12, 11343-11354.	14.6	56
49	Dynamic interplay between bone and multiple myeloma: Emerging roles of the osteoblast. Bone, 2015, 75, 161-169.	2.9	55
50	Brief treatment with a highly selective immunoproteasome inhibitor promotes long-term cardiac allograft acceptance in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8425-E8432.	7.1	54
51	Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma. Science Translational Medicine, 2017, 9, .	12.4	53
52	Pyk2 promotes tumor progression in multiple myeloma. Blood, 2014, 124, 2675-2686.	1.4	51
53	Results of a phase 2 trial of the single-agent histone deacetylase inhibitor panobinostat in patients with relapsed/refractory WaldenstrA¶m macroglobulinemia. Blood, 2013, 121, 1296-1303.	1.4	46
54	Drug-Related Pneumonitis During Mammalian Target of Rapamycin Inhibitor Therapy: Radiographic Pattern-Based Approach in Waldenström Macroglobulinemia as a Paradigm. Oncologist, 2015, 20, 1077-1083.	3.7	46

#	Article	IF	Citations
55	IgM myeloma: A multicenter retrospective study of 134 patients. American Journal of Hematology, 2017, 92, 746-751.	4.1	45
56	Platelets Enhance Multiple Myeloma Progression via IL- \hat{l}^2 Upregulation. Clinical Cancer Research, 2018, 24, 2430-2439.	7.0	44
57	Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. American Journal of Hematology, 2019, 94, 1244-1253.	4.1	42
58	Phase II Trial of the Combination of Ixazomib, Lenalidomide, and Dexamethasone in High-Risk Smoldering Multiple Myeloma. Blood, 2018, 132, 804-804.	1.4	42
59	How I treat smoldering multiple myeloma. Blood, 2014, 124, 3380-3388.	1.4	41
60	Cancer Cell Dissemination and Homing to the Bone Marrow in a Zebrafish Model. Cancer Research, 2016, 76, 463-471.	0.9	39
61	Current use of monoclonal antibodies in the treatment of multiple myeloma. British Journal of Haematology, 2018, 181, 447-459.	2.5	37
62	Mutational Profile and Prognostic Relevance of Circulating Tumor Cells in Multiple Myeloma. Blood, 2015, 126, 23-23.	1.4	37
63	Aberrant Levels of miRNAs in Bone Marrow Microenvironment and Peripheral Blood of Myeloma Patients and Disease Progression. Journal of Molecular Diagnostics, 2015, 17, 669-678.	2.8	36
64	A Phase Ib/II Study of Oprozomib in Patients with Advanced Multiple Myeloma and Waldenström Macroglobulinemia. Clinical Cancer Research, 2019, 25, 4907-4916.	7.0	36
65	Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein <scp>MUC</scp> 1. British Journal of Haematology, 2017, 176, 929-938.	2.5	34
66	Inhibition of microRNA-138 enhances bone formation in multiple myeloma bone marrow niche. Leukemia, 2018, 32, 1739-1750.	7.2	34
67	The COronavirus Pandemic Epidemiology (COPE) Consortium: A Call to Action. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1283-1289.	2.5	34
68	A Prospective Multicenter Study Of The Bruton's Tyrosine Kinase Inhibitor Ibrutinib In Patients With Relapsed Or Refractory Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 251-251.	1.4	34
69	Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma. Current Cancer Therapy Reviews, 2014, 10, 70-79.	0.3	34
70	Biomarkers of Bone Remodeling in Multiple Myeloma Patients to Tailor Bisphosphonate Therapy. Clinical Cancer Research, 2014, 20, 3955-3961.	7.0	33
71	Dietary Pattern and Risk of Multiple Myeloma in Two Large Prospective US Cohort Studies. JNCI Cancer Spectrum, 2019, 3, pkz025.	2.9	33
72	CXCR7-dependent angiogenic mononuclear cell trafficking regulates tumor progression in multiple myeloma. Blood, 2014, 124, 1905-1914.	1.4	32

#	Article	IF	CITATIONS
73	Phase 1 study of ibrutinib and the CXCR4 antagonist ulocuplumab in CXCR4-mutated Waldenstr¶m macroglobulinemia. Blood, 2021, 138, 1535-1539.	1.4	32
74	Exosomes in Tumor Angiogenesis. Methods in Molecular Biology, 2016, 1464, 25-34.	0.9	32
75	Targeting SDF-1 in multiple myeloma tumor microenvironment. Cancer Letters, 2016, 380, 315-318.	7.2	31
76	Human regulatory T cells undergo self-inflicted damage via granzyme pathways upon activation. JCI Insight, 2017, 2, .	5.0	31
77	Global Epigenetic Regulation of MicroRNAs in Multiple Myeloma. PLoS ONE, 2014, 9, e110973.	2.5	29
78	Bortezomib overcomes the negative impact of CXCR4 mutations on survival of Waldenstrom macroglobulinemia patients. Blood, 2018, 132, 2608-2612.	1.4	29
79	A Phase I/II Study of Evofosfamide, A Hypoxia-activated Prodrug with or without Bortezomib in Subjects with Relapsed/Refractory Multiple Myeloma. Clinical Cancer Research, 2019, 25, 478-486.	7.0	29
80	Are you sure this is Waldenström macroglobulinemia?. Hematology American Society of Hematology Education Program, 2012, 2012, 586-594.	2.5	28
81	Antibody-targeting of ultra-small nanoparticles enhances imaging sensitivity and enables longitudinal tracking of multiple myeloma. Nanoscale, 2019, 11, 20485-20496.	5.6	27
82	Prediagnosis dietary pattern and survival in patients with multiple myeloma. International Journal of Cancer, 2020, 147, 1823-1830.	5.1	27
83	Prevalence of monoclonal gammopathies and clinical outcomes in a high-risk US population screened by mass spectrometry: a multicentre cohort study. Lancet Haematology,the, 2022, 9, e340-e349.	4.6	27
84	Efficacy of the oral mTORC1 inhibitor everolimus in relapsed or refractory indolent lymphoma. American Journal of Hematology, 2017, 92, 448-453.	4.1	26
85	Progression signature underlies clonal evolution and dissemination of multiple myeloma. Blood, 2021, 137, 2360-2372.	1.4	26
86	Minimal Residual Disease in Myeloma: Application for Clinical Care and New Drug Registration. Clinical Cancer Research, 2021, 27, 5195-5212.	7.0	26
87	Phase I Trial of CCI-779 (Temsirolimus) and Weekly Bortezomib in Relapsed and/or Refractory Multiple Myeloma. Blood, 2008, 112, 3696-3696.	1.4	26
88	Fluorescence monitoring of rare circulating tumor cell and cluster dissemination in a multiple myeloma xenograft model in vivo. Journal of Biomedical Optics, 2019, 24, 1.	2.6	25
89	Perspectives on the Risk-Stratified Treatment of Multiple Myeloma. Blood Cancer Discovery, 2022, 3, 273-284.	5.0	24
90	Hypoxia Promotes Dissemination and Colonization in New Bone Marrow Niches in Waldenström Macroglobulinemia. Molecular Cancer Research, 2015, 13, 263-272.	3.4	23

#	Article	IF	CITATIONS
91	Bone Marrow Stroma and Vascular Contributions to Myeloma Bone Homing. Current Osteoporosis Reports, 2017, 15, 499-506.	3.6	23
92	Prospective, Multicenter Clinical Trial of Everolimus as Primary Therapy in Waldenstrom Macroglobulinemia (WMCTG 09-214). Clinical Cancer Research, 2017, 23, 2400-2404.	7.0	23
93	Long-Term Outcome of a Prospective Study of Bortezomib, Dexamethasone and Rituximab (BDR) in Previously Untreated, Symptomatic Patients with Waldenstrom's Macroglobulinemia. Blood, 2015, 126, 1833-1833.	1.4	23
94	Exome sequencing reveals recurrent germ line variants in patients with familial Waldenström macroglobulinemia. Blood, 2016, 127, 2598-2606.	1.4	22
95	Monoclonal Gammopathy of Undetermined Significance (MGUS)â€"Not So Asymptomatic after All. Cancers, 2020, 12, 1554.	3.7	22
96	Genomic Aberrations in Multiple Myeloma. Cancer Treatment and Research, 2016, 169, 23-34.	0.5	21
97	Established and Novel Prognostic Biomarkers in Multiple Myeloma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 548-560.	3.8	21
98	Acute lymphoblastic leukemia as a clonally unrelated second primary malignancy after multiple myeloma. Leukemia, 2019, 33, 266-270.	7.2	21
99	Are you sure this is Waldenstrom macroglobulinemia?. Hematology American Society of Hematology Education Program, 2012, 2012, 586-94.	2.5	21
100	Clinical Profile of Single-Agent Oprozomib in Patients (Pts) with Multiple Myeloma (MM): Updated Results from a Multicenter, Open-Label, Dose Escalation Phase 1b/2 Study. Blood, 2014, 124, 34-34.	1.4	21
101	Pro-organic radical contrast agents ("pro-ORCAsâ€) for real-time MRI of pro-drug activation in biological systems. Polymer Chemistry, 2020, 11, 4768-4779.	3.9	20
102	Single-cell RNA sequencing: one step closer to the clinic. Nature Medicine, 2021, 27, 375-376.	30.7	20
103	The Combination of Bortezomib and NPI-0052 Exerts Anti-Tumor Activity in Waldenstrom Macroglobulinemia (WM) Blood, 2007, 110, 1516-1516.	1.4	19
104	Clinical Characteristics and Treatment Outcome Of CNS Involvement (Bing-Neel Syndrome) In Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 5090-5090.	1.4	18
105	Profiling of circulating exosomal miRNAs in patients with Waldenström Macroglobulinemia. PLoS ONE, 2018, 13, e0204589.	2.5	17
106	Updated Results of a Phase 2 Study of Modified Lenalidomide, Bortezomib, and Dexamethasone (RVd-lite) in Transplant-Ineligible Multiple Myeloma. Blood, 2019, 134, 3178-3178.	1.4	17
107	Prospective, Multicenter Study of the MTOR Inhibitor Everolimus (RAD001) As Primary Therapy in Waldenstrom's Macroglobulinemia. Blood, 2011, 118, 2951-2951.	1.4	17
108	Immunotherapy in Multiple Myeloma: Accelerating on the Path to the Patient. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 332-344.	0.4	16

#	Article	IF	CITATIONS
109	Pregnancy outcomes, risk factors, and cell count trends in pregnant women with essential thrombocythemia. Leukemia Research, 2020, 98, 106459.	0.8	16
110	In Vivo Mobilization of Multiple Myeloma Cells Out of the Bone Marrow Using the CXCR4 Inhibitor AMD3100 and Bortezomib: Implications for Sensitization of Myeloma Cells to Apoptosis Blood, 2007, 110, 2501-2501.	1.4	16
111	Final Results of Phase I/II Trial of the Oral mTOR Inhibitor Everolimus (RAD001) in Combination with Bortezomib and Rituximab (RVR) in Relapsed or Refractory Waldenstrom Macroglobulinemia. Blood, 2014, 124, 3081-3081.	1.4	16
112	Altered cytokine and chemokine profiles in multiple myeloma and its precursor disease. Cytokine, 2014, 69, 294-297.	3.2	15
113	Citron Rho-interacting kinase silencing causes cytokinesis failure and reduces tumor growth in multiple myeloma. Blood Advances, 2019, 3, 995-1002.	5.2	15
114	Phase Ib Study of the Novel Anti-CXCR4 Antibody Ulocuplumab (BMS-936564) in Combination with Lenalidomide Plus Low-Dose Dexamethasone, or with Bortezomib plus Dexamethasone in Subjects with Relapsed or Refractory Multiple Myeloma. Blood, 2014, 124, 3483-3483.	1.4	14
115	Anti-Sclerostin Treatment Prevents Multiple Myeloma Induced Bone Loss and Reduces Tumor Burden. Blood, 2015, 126, 119-119.	1.4	14
116	Cyclophosphamide, bortezomib, and dexamethasone combination in waldenstrom macroglobulinemia. American Journal of Hematology, 2015, 90, E122-3.	4.1	13
117	Genome Wide DNA Methylation Profiling In Patients with Multiple Myeloma Blood, 2010, 116, 3622-3622.	1.4	12
118	Quality of life, psychological distress, and prognostic perceptions in patients with multiple myeloma. Cancer, 2022, 128, 1996-2004.	4.1	12
119	Emerging drugs in multiple myeloma. Expert Opinion on Emerging Drugs, 2007, 12, 155-163.	2.4	11
120	ASH evidence-based guidelines: what is the role of maintenance therapy in the treatment of multiple myeloma?. Hematology American Society of Hematology Education Program, 2009, 2009, 587-589.	2.5	11
121	Bone marrow biopsy in lowâ€risk monoclonal gammopathy of undetermined significance reveals a novel smoldering multiple myeloma risk group. American Journal of Hematology, 2019, 94, E146-E149.	4.1	11
122	Serum Free Light Chain in Waldenstrom Macroglobulinemia Blood, 2006, 108, 2420-2420.	1.4	11
123	Lack of Response to Vaccination in MGUS and Stable Myeloma Blood, 2009, 114, 1852-1852.	1.4	11
124	Attenuated response to SARS-CoV-2 vaccine in patients with asymptomatic precursor stages of multiple myeloma and Waldenstrom macroglobulinemia. Cancer Cell, 2022, 40, 6-8.	16.8	11
125	Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes. Nature Communications, 2022, 13, .	12.8	11
126	Bortezomib, Dexamethasone and Rituximab (BDR) Is a Highly Active Regimen in the Primary Therapy of Waldenstrom's Macroglobulinemia: Planned Interim Results of WMCTG Clinical Trial 05-180 Blood, 2006, 108, 2765-2765.	1.4	10

#	Article	IF	CITATIONS
127	A Novel Activating Mutation Of CXCR4 Plays a Crucial Role In Waldenstrom Macroglobulinemia Biology. Blood, 2013, 122, 272-272.	1.4	10
128	Clonal hematopoiesis is associated with increased risk of progression of asymptomatic Waldenström macroglobulinemia. Blood Advances, 2022, 6, 2230-2235.	5.2	10
129	Safety and immunogenicity of conjugate quadrivalent meningococcal vaccination after hematopoietic cell transplantation. Blood Advances, 2018, 2, 1272-1276.	5.2	9
130	Phase II Trial of Single Agent Panobinostat (LBH589) In Relapsed or Relapsed/Refractory Waldenstrom Macroglobulinemia. Blood, 2010, 116, 3952-3952.	1.4	9
131	ROBO1 Promotes Homing, Dissemination, and Survival of Multiple Myeloma within the Bone Marrow Microenvironment. Blood Cancer Discovery, 2021, 2, 338-353.	5.0	8
132	Dissecting the Mechanisms of Activity of SLAMF7 and the Targeting Antibody Elotuzumab in Multiple Myeloma. Blood, 2014, 124, 3431-3431.	1.4	8
133	A Phase II Study of Modified Lenalidomide, Bortezomib, and Dexamethasone (RVD-lite) for Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma. Blood, 2015, 126, 4217-4217.	1.4	8
134	Whole-Exome Sequencing and Targeted Deep Sequencing of cfDNA Enables a Comprehensive Mutational Profiling of Multiple Myeloma. Blood, 2016, 128, 197-197.	1.4	8
135	Epigenetics in Multiple Myeloma. Cancer Treatment and Research, 2016, 169, 35-49.	0.5	7
136	Phase II Trial of Combination of Bortezomib and Rituximab in Relapsed and/or Refractory Waldenstrom Macroglobulinemia. Blood, 2008, 112, 832-832.	1.4	7
137	Human Monoclonal Antibody Targeting IL-17A (AIN457) Down-Regulates MM Cell-Growth and Survival and Inhibits Osteoclast Development In Vitro and In Vivo: A Potential Novel Therapeutic Application In Myeloma. Blood, 2010, 116, 456-456.	1.4	7
138	Targeting the Bone Marrow in Waldenstrom Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, S65-S69.	0.4	6
139	Clinical perspective: Linking psychosocial care to the disease continuum in patients with multiple myeloma. Palliative and Supportive Care, 2015, 13, 829-838.	1.0	6
140	The Role of Clonal Hematopoiesis of Indeterminate Potential (CHIP) in Multiple Myeloma: Immunomodulator Maintenance Post Autologous Stem Cell Transplant (ASCT) Predicts Better Outcome. Blood, 2018, 132, 749-749.	1.4	6
141	Pregnancy Outcomes, Risk Factors, and Gestational Cell Count Trends in Pregnant Women with Essential Thrombocythemia and Polycythemia Vera. Blood, 2019, 134, 4172-4172.	1.4	6
142	A Phase II Study of Daratumumab in Patients with High-Risk MGUS and Low-Risk Smoldering Multiple Myeloma: First Report of Efficacy and Safety. Blood, 2019, 134, 1898-1898.	1.4	6
143	Carfilzomib, Rituximab and Dexamethasone (CaRD) Is Highly Active and Offers a Neuropathy Sparing Approach For Proteasome-Inhibitor Based Therapy In Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 757-757.	1.4	6
144	Finding the right academic job. Hematology American Society of Hematology Education Program, 2009, 2009, 729-733.	2.5	5

#	Article	IF	Citations
145	BELLINI: a renaissance for an era of precision therapy in multiple myeloma. Lancet Oncology, The, 2020, 21, 1547-1549.	10.7	5
146	Final Results of the Phase I/II Trial of Weekly Bortezomib In Combination with Temsirolimus (CCI-779) In Relapsed or Relapsed/Refractory Multiple Myeloma Specifically In Patients Refractory to Bortezomib. Blood, 2010, 116, 990-990.	1.4	5
147	Phase I/II Trial Of Everolimus, Bortezomib and Rituximab In Relapsed Or Relapsed/Refractory Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 4402-4402.	1.4	5
148	Immunotherapy for hematological malignancies. Journal of Life Sciences (Westlake Village, Calif), 2019, 1, 46-52.	1.8	5
149	The emerging importance and evolving understanding of clonal hematopoiesis in multiple myeloma. Seminars in Oncology, 2022, 49, 19-26.	2.2	5
150	Novel Therapeutic Agents in Waldenstr \tilde{A} ¶m's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2009, 9, 84-86.	1.4	4
151	Response to ibrutinib in a patient with IgG lymphoplasmacytic lymphoma carrying the MYD88 L265P gene mutation. Leukemia and Lymphoma, 2016, 57, 2699-2701.	1.3	4
152	Clinical Controversies in the Management of Smoldering Multiple Myeloma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, 314-319.	3.8	4
153	Inflammatory stromal cells in the myeloma microenvironment. Nature Immunology, 2021, 22, 677-678.	14.5	4
154	Updated Results of a Phase I Study of RAD001 In Combination with Lenalidomide In Patients with Relapsed or Refractory Multiple Myeloma with Pharmacodynamic and Pharmacokinetic Analysis. Blood, 2010, 116, 3051-3051.	1.4	4
155	In Vivo Targeting of Stromal-Derived Factor-1 As a Strategy to Prevent Myeloma Cell Dissemination to Distant Bone Marrow Niches. Blood, 2012, 120, 440-440.	1.4	4
156	Phase I/II Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy In Relapsed Or Relapsed/Refractory Multiple Myeloma. Blood, 2013, 122, 1947-1947.	1.4	4
157	Bone Marrow Mobilization Of Endothelial Progenitor Cells Represents An Early Pathogenic Event During Multiple Myeloma Progression. Blood, 2013, 122, 680-680.	1.4	4
158	Final Results of the Phase I/II Study of Chemosensitization Using the CXCR4 Inhibitor Plerixafor in Combination with Bortezomib in Patients with Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2015, 126, 4256-4256.	1.4	4
159	Characterization of the Role of Regulatory T Cells (Tregs) in Inducing Progression of Multiple Myeloma. Blood, 2015, 126, 502-502.	1.4	4
160	The importance of the genomic landscape in Waldenstr \tilde{A} ¶m's Macroglobulinemia for targeted therapeutical interventions. Oncotarget, 2017, 8, 35435-35444.	1.8	4
161	Circulating Exosomal microRNAs Are Prognostic Markers in Multiple Myeloma. Blood, 2015, 126, 1770-1770.	1.4	4
162	A novel in vivo model for studying conditional dual loss of BLIMPâ€1 and p53 in Bâ€cells, leading to tumor transformation. American Journal of Hematology, 2017, 92, E138-E145.	4.1	3

#	Article	IF	CITATIONS
163	The 2020 BMT CTN Myeloma Intergroup Workshop on Immune Profiling and Minimal Residual Disease Testing in Multiple Myeloma. Transplantation and Cellular Therapy, 2021, 27, 807-816.	1.2	3
164	Novel Agent Perifosine Enhances Antitumor Activity of Bortezomib, Rituximab and Other Conventional Therapies in Waldenstrom's Macroglobulinemia Blood, 2006, 108, 2517-2517.	1.4	3
165	Incidence of Peripheral Neuropathy in Waldenstrol^m Macroglobulinemia Patients At Diagnosis,. Blood, 2011, 118, 3692-3692.	1.4	3
166	Selective Inhibition of the Chymotrypsin-Like Activity of the Immunoproteasome and Constitutive Proteasome Represents a Valid Anti-Tumor Strategy in Waldenstrom Macroglobulinemia Blood, 2009, 114, 4911-4911.	1.4	3
167	Hevylite $\hat{A}^{\text{@}}$, a New Marker of Tumor Measurement In Waldenstrom Macroglobulinemia. Blood, 2010, 116, 5076-5076.	1.4	3
168	Single-Cell Multi-Omics Defines the Cell-Type Specific Impact of SF3B1 Splicing Factor Mutations on Hematopoietic Differentiation in Human Clonal Hematopoiesis and Myelodysplastic Syndromes. Blood, 2021, 138, 145-145.	1.4	3
169	Future Directions in the Evaluation and Treatment of Precursor Plasma Cell Disorders. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e400-e406.	3.8	2
170	Aspirin Use and Survival in Multiple Myeloma Patients. Blood, 2018, 132, 3250-3250.	1.4	2
171	The Selective Protein Kinase CB Inhibitor, Enzastaurin, Induces In Vitro and In Vivo Antitumor Activity in Waldenstrom's Macroglobulinemia Blood, 2006, 108, 2496-2496.	1.4	2
172	Phase II Trial of the Oral mTOR Inhibitor RAD001 (Everolimus) in Relapsed and/or Refractory Waldenstrom Macroglobulinemia: Preliminary Results Blood, 2007, 110, 4496-4496.	1.4	2
173	RAD001 Exerts Anti-Tumor Activity in Waldenstrom Macroglobulinemia Blood, 2009, 114, 3732-3732.	1.4	2
174	Eph-B2/Ephrin-B2 Interaction Plays a Major Role In the Adhesion and Survival of WM Cells In the Context of the Bone Marrow Microenvironment. Blood, 2010, 116, 142-142.	1.4	2
175	Phase I Trial of Plerixafor and Bortezomib as a Chemosensitization Strategy In Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2010, 116, 1943-1943.	1.4	2
176	The Role of Serum Immunoglobulin Free Light Chain In Response and Progression In Waldenstrom Macroglobulinemia. Blood, 2010, 116, 3095-3095.	1.4	2
177	The New CXCR4 Inhibitor MDX-1338 Exerts Anti-Tumor Activity in Multiple Myeloma. Blood, 2011, 118, 1844-1844.	1.4	2
178	Biomarker Correlation with Outcomes in Patients with Relapsed or Refractory Multiple Myeloma on a Phase I Study of Everolimus in Combination with Lenalidomide,. Blood, 2011, 118, 3966-3966.	1.4	2
179	Stroma-Derived Exosomes Mediate Oncogenesis in Multiple Myeloma. Blood, 2011, 118, 625-625.	1.4	2
180	In Vivo Genome-Wide Crispr Library Screen in a Xenograft Mouse Model of Tumor Growth and Metastasis of Multiple Myeloma. Blood, 2016, 128, 1137-1137.	1.4	2

#	Article	IF	CITATIONS
181	Prospective, Multicenter Clinical Trial of Everolimus As Primary Therapy in Waldenstrom Macroglobulinemia (WMCTG 09-214). Blood, 2016, 128, 4487-4487.	1.4	2
182	Imatinib Mesylate (Gleevec®) Is Active in Relapsed/Refractory Waldenstrom's Macroglobulinemia: Planned Interim Results of WMCTG Clinical Trial 05-140 Blood, 2006, 108, 2484-2484.	1.4	2
183	The CXCR4/SDF-1 Axis Regulates Migration and Adhesion in Waldenstrom Macroglobulinemia Blood, 2006, 108, 2418-2418.	1.4	2
184	Perifosine, an Oral Bioactive Novel Akt Inhibitor, Induces In Vitro and In Vivo Antitumor Activity in Waldenstrom Macroglobulinemia Blood, 2006, 108, 2488-2488.	1.4	2
185	Resveratrol Exerts Antiproliferative Effect and Induces Apoptosis in Waldenstrom's Macroglobulinemia Blood, 2007, 110, 1383-1383.	1.4	2
186	Phase II Trial of Weekly Bortezomib in Combination with Rituximab in Untreated Patients with Waldenstrom's Macroglobulinemia Blood, 2009, 114, 3752-3752.	1.4	2
187	PET/CT a New Marker of Response in Waldenstrom Macroglobulinemia (WM) Blood, 2009, 114, 1937-1937.	1.4	2
188	Mirna Expression Profiling and Proteomic Analysis Of Circulating Exosomes From Multiple Myeloma Patients. Blood, 2013, 122, 3086-3086.	1.4	2
189	Hypoxia Induces Drug Resistance In Multiple Myeloma. Blood, 2013, 122, 1852-1852.	1.4	2
190	Phase I/II Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy in Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2014, 124, 5777-5777.	1.4	2
191	A Phase II Trial of the Combination of Ixazomib, Lenalidomide, and Dexamethasone in High-Risk Smoldering Multiple Myeloma. Blood, 2021, 138, 2749-2749.	1.4	2
192	A Phase II Study of Daratumumab in Patients with High-Risk MGUS and Low-Risk Smoldering Multiple Myeloma. Blood, 2021, 138, 1649-1649.	1.4	2
193	Multiple Myeloma With Amplification of Chr1q: Therapeutic Opportunity and Challenges. Frontiers in Oncology, 0, 12, .	2.8	2
194	Team Work Matters: Dual Inhibition Puts Non-Hodgkin Lymphoma Under Siege. Clinical Cancer Research, 2014, 20, 5863-5865.	7.0	1
195	Epigenomics in Waldenstrom's macroglobulinaemia. Best Practice and Research in Clinical Haematology, 2016, 29, 156-160.	1.7	1
196	Bone marrow niche in multiple myeloma and its precursor states. HemaSphere, 2019, 3, 121-123.	2.7	1
197	Intensification and consolidation therapy in multiple myeloma in the current era. Lancet Haematology,the, 2020, 7, e427-e429.	4.6	1
198	Single-Cell RNA Sequencing Reveals Compromised Immune Microenvironment in Precursor Stages of Multiple Myeloma. Blood, 2018, 132, 2603-2603.	1.4	1

#	Article	IF	Citations
199	Single-Cell Multi-Omics in Human Clonal Hematopoiesis Reveals That <i>DNMT3A</i> R882 Mutations Perturb Early Progenitor States through Selective Hypomethylation. Blood, 2020, 136, 1-2.	1.4	1
200	Inhibition of ERK1/2 Activity by the MEK1/2 Inhibitor AZD6244 (ARRY-142886) Induces Human Multiple Myeloma Cell Apoptosis in the Bone Marrow Microenvironment: A New Therapeutic Strategy for MM Blood, 2006, 108, 3460-3460.	1.4	1
201	Serum Immunoglobulin Free Light Chain (sFLC) Is a Sensitive Marker of Response in Waldenstrom Macroglobulinemia (WM) Blood, 2007, 110, 1486-1486.	1.4	1
202	Phase II Trial of Perifosine (KRX-0401) in Relapsed and/or Refractory Waldenstrol^m Macroglobulinemia: Preliminary Results Blood, 2007, 110, 4493-4493.	1.4	1
203	Phase II Trial of the mTOR Inhibitor RAD001 in Relapsed and/or Refractory Waldenstrom Macroglobulinemia: The Dana Farber Cancer Institute Experience Blood, 2008, 112, 1011-1011.	1.4	1
204	MicroRNA Changes Occur in Multiple Myeloma Cells in the Context of Bone Marrow Milieu Blood, 2009, 114, 1785-1785.	1.4	1
205	Role of Selectins in the Pathogenesis of Multiple Myeloma Blood, 2009, 114, 951-951.	1.4	1
206	Selectin Inhibition Disrupts Multiple Myeloma Cells Interaction with the Bone Marrow Microenvironment and Sensitizes Them to Therapy. Blood, 2010, 116, 453-453.	1.4	1
207	Phase I Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy in Relapsed or Relapsed/Refractory Multiple Myeloma. Blood, 2011, 118, 1874-1874.	1.4	1
208	Phase I Trial of Everolimus and Rituximab or Everolimus, Bortezomib and Rituximab in Relapsed or Relapsed/Refractory Waldenstrom's Macroglobulinemia. Blood, 2011, 118, 2705-2705.	1.4	1
209	Final Results of the Phase II Trial of Single Agent Panobinostat (LBH589) in Relapsed or Relapsed/Refractory Waldenstrom Macroglobulinemia. Blood, 2011, 118, 2706-2706.	1.4	1
210	Clonal-Heterogeneity and Propensity for Bone Metastasis in Multiple Myeloma. Blood, 2014, 124, 3370-3370.	1.4	1
211	Molecular Mechanisms Regulating Resistance to the Akt Inhibitor Perifosine in Waldenstrom's Macroglobulinemia, the Role of the ERK and PKC Pathways Blood, 2006, 108, 2416-2416.	1.4	1
212	Phase II Trial of Combination of Bortezomib and Rituximab in Relapsed and/or Refractory Waldenstrom Macroglobulinemia: Preliminary Results Blood, 2007, 110, 4494-4494.	1.4	1
213	Carfilzomib Exerts Anti-Neoplastic Activity in Waldenstrom Macroglobulinemia Blood, 2009, 114, 4916-4916.	1.4	1
214	Role of TORC1 and TORC2 in Multiple Myeloma. Blood, 2011, 118, 1815-1815.	1,4	1
215	CRM1 Inhibition Abrogates Osteoclast Formation and Bone Resorption Via Inhibition of RANKL-Induced NFκB While Sparing Osteoblastogenesis: Further Therapeutic Implication in Multiple Myeloma. Blood, 2012, 120, 1835-1835.	1.4	1
216	Proteomic Characterization of the Multiple Myeloma Bone Marrow Extracellular Matrix. Blood, 2014, 124, 2051-2051.	1.4	1

#	Article	IF	Citations
217	Molecular Modification of the Microenvironment by the Tumor Clone. Blood, 2014, 124, SCI-49-SCI-49.	1.4	1
218	Platelets/Megakaryocytes Are Critical Regulators of Tumor Progression in Multiple Myeloma. Blood, 2015, 126, 1793-1793.	1.4	1
219	Profiling of Circulating Exosomes in Patients with WaldenstrĶm Macroglobulinemia. Blood, 2016, 128, 2940-2940.	1.4	1
220	Targeting a Myeloma Translocation for the First Time: The $t(11;14)$ Journey. , 2018, 15, .		1
221	A Phase Ib/II Study of the Novel Anti-CXCR4 Antibody Ulocuplumab (BMS-936564) in Combination with Lenalidomide Plus Low-Dose Dexamethasone, or with Bortezomib Plus Dexamethasone in Subjects with Relapsed or Refractory Multiple Myeloma. Blood, 2018, 132, 3263-3263.	1.4	1
222	A Phase II Study of the Efficacy and Safety of Lenalidomide, Subcutaneous Bortezomib and Dexamethasone (RVD) Combination Therapy for Patients with Newly Diagnosed Multiple Myeloma: Promising Activity and Manageable Toxicity, Including in High Risk Disease. Blood, 2018, 132, 1981-1981.	1.4	1
223	Repositioning the Repurposed Drug, a Structural Study of Thalidomide Analogs. , 2019, 16, .		1
224	Quality of Life, Psychological Distress, and Prognostic Awareness in Caregivers of Patients with Multiple Myeloma. Blood, 2021, 138, 3044-3044.	1.4	1
225	Identification of a Novel Epigenetic Mechanism of MYC Deregulation in Smoldering and Newly Diagnosed Multiple Myeloma Patients. Blood, 2021, 138, 504-504.	1.4	1
226	Non-Invasive Liquid Biopsy to Quantify and Molecularly Characterize Circulating Multiple Myeloma Cells in the Assessment of Precursor Disease Pathology. Blood, 2021, 138, 78-78.	1.4	1
227	Clonal Hematopoiesis Prevalence Increases throughout Treatment of Newly Diagnosed Multiple Myeloma Patients. Blood, 2021, 138, 1091-1091.	1.4	1
228	Clonal Hematopoiesis Is Associated with Increased Risk of Progression of Asymptomatic Waldenström Macroglobulinemia. Blood, 2021, 138, 2678-2678.	1.4	1
229	Regular Aspirin Use and Mortality in Multiple Myeloma Patients. Cancer Epidemiology Biomarkers and Prevention, 2021, , cebp.EPI-21-0946-E.2021.	2.5	1
230	Mass cytometry staining for human bone marrow clinical samples. STAR Protocols, 2022, 3, 101163.	1.2	1
231	Perceptions of prognosis in caregivers of multiple myeloma (MM) patients Journal of Clinical Oncology, 2021, 39, 12082-12082.	1.6	О
232	Abstract 2240: Genomic profiling of smoldering multiple myeloma classifies distinct molecular groups., 2021,,.		0
233	A Novel Real-Time In Vivo Homing Model of Multiple Myeloma Blood, 2006, 108, 242-242.	1.4	0
234	Clinical and Pathological Prognostic Markers for Survival in Adult Patients with Post-Transplant Lymphoproliferative Disorders (PTLD), BCL2 Is a Poor Prognostic Marker in PTLD Blood, 2006, 108, 2035-2035.	1.4	0

#	Article	IF	CITATIONS
235	Targeting NF-kB by Perifosine, Bortezomib and Rituximab in Waldenstrom Macroglobulinemia (WM) Blood, 2007, 110, 2512-2512.	1.4	O
236	The Interaction of CXCR4/SDF-1 and VLA-4 Regulates Adhesion and Transendothelial Migration in Waldenstrom Macroglobulinemia Blood, 2007, 110, 2617-2617.	1.4	0
237	Regulation of the New CXCR7 Receptor in Plasma Cell Dyscrasias Blood, 2007, 110, 3527-3527.	1.4	0
238	Identification of An Atypical Paraprotein with Inconsistent M-Spike Quantitation in Four Patients with Waldenstrom's Macroglobulinemia. Blood, 2008, 112, 5145-5145.	1.4	0
239	The Effect of Insulin-Like Growth Factor 1 on Waldenstrom Macroglobulinemia. Blood, 2008, 112, 4994-4994.	1.4	0
240	TH17 Pathway Promotes Tumor Cell Growth and Suppresses Immune Function in Myeloma: Potential for Therapeutic Application. Blood, 2008, 112, 2737-2737.	1.4	0
241	Phase II Trial of Weekly Bortezomib in Combination with Rituximab in Relapsed or Relapsed/Refractory Waldenstrom's Macroglobulinemia Blood, 2009, 114, 2727-2727.	1.4	0
242	Primary Waldesntrom Macroglobulinemia Cells Harbor Constitutive Activation of Akt, mTOR, Rictor and Raptor: Rational for Testing a Dual Inhibitor of the PI3K/Akt and mTOR Pathways in This Disease Blood, 2009, 114, 3843-3843.	1.4	0
243	Serum Immunoglobulin Free Light Chain (sFLC) Measurement as a New Marker of Response to Therapy and Survival in Waldenstrom Macroglobulinemia (WM) Blood, 2009, 114, 3952-3952.	1.4	0
244	Citron Rho Interacting Kinase (CRIK) Regulates Survival in IL-6 Dependent Multiple Myeloma Cells Blood, 2009, 114, 1825-1825.	1.4	0
245	Eph-B2 Receptor Tyrosine Kinase Is Overexpressed in Waldenstrom's Macroglubulinemia and Plays a Major Role in Its Interaction with the Bone Marrow Microenvironment Blood, 2009, 114, 2935-2935.	1.4	0
246	The Role of FGFR in the Progression of Waldenstrom's Macroglubulinemia and the Effect of Its Inhibition by TKI-258 Blood, 2009, 114, 3737-3737.	1.4	0
247	The Effect of the CXCR4 Inhibitors, AMD3100 and AMD3465, in Multiple Myeloma Cell Homing and Its Interaction with the Bone Marrow Microenvironment Blood, 2009, 114, 1826-1826.	1.4	0
248	Role of Hypoxia in the Progression and Dissemination of Multiple Myeloma Blood, 2009, 114, 421-421.	1.4	0
249	Phase II Trial of Weekly Bortezomib in Combination with CCI-779 (temsirolimus) in Relapsed or Relapsed/Refractory Multiple Myeloma Blood, 2009, 114, 748-748.	1.4	0
250	Dynamic Regulation of the Level of Hypoxia In the Bone Marrow Regulates Cell Dissemination In Multiple Myeloma. Blood, 2010, 116, 4035-4035.	1.4	0
251	Proteomic Studies Identify Citron Rho Interacting Kinase (CRIK), a Novel Protein That Regulates Proliferation and Survival In Multiple Myeloma Cells. Blood, 2010, 116, 2958-2958.	1.4	0
252	LNA Anti-Microrna-155: a Novel Therapeutic Strategy In Waldenstrom Macroglobulinemia and Chronic Lymphocytic Leukemia. Blood, 2010, 116, 4914-4914.	1.4	0

#	Article	IF	CITATIONS
253	Promoter-Wide Transcriptional Deregulation In Waldenstrom Macroglobulinemia. Blood, 2010, 116, 3620-3620.	1.4	O
254	The Role of PET Scan Imaging In Waldenstrom Macroglobulinemia. Blood, 2010, 116, 4153-4153.	1.4	0
255	Similar Dreams, Different Journeys. , 2011, 8, .		О
256	Hypoxia Promotes Dissemination of Multiple Myeloma Through Acquisition of Endothelial to Mesenchymal Transition (EMT) Features. Blood, 2011, 118, 471-471.	1.4	0
257	Inhibition of c-Myc Expression and Function in Hematologic Malignancies. Blood, 2011, 118, 1409-1409.	1.4	0
258	Perifosine Plus Bortezomib and Dexamethasone in Relapsed/Refractory Multiple Myeloma Patients Previously Treated with Bortezomib: Final Results of a Phase I/II Trial. Blood, 2011, 118, 815-815.	1.4	0
259	The Role of PI3K Signaling in Cell Trafficking of Multiple Myeloma. Blood, 2011, 118, 1804-1804.	1.4	0
260	RVD Induction Followed by Consolidation with ASCT in Patients with Newly Diagnosed Multiple Myeloma,. Blood, 2011, 118, 4134-4134.	1.4	0
261	L-Stereoisomer RNA Oligonucleotide Anti-SDF-1 (Nox-A12) Disrupts the Interaction of Multiple Myeloma Cells with the Bone Marrow Milieu In Vivo, Leading to Enhanced Sensitivity to Bortezomib. Blood, 2011, 118, 887-887.	1.4	0
262	The Role of Bortezomib-Containing Regimens in Improving Response in Patients with Waldenstrom Macroglobulinemia. Blood, 2011, 118, 2713-2713.	1.4	0
263	MicroRNA-155 As a Potential Plasma Biomarker for Chronic Lymphocytic Leukemia and Waldenstrom Macroglobulinemia,. Blood, 2011, 118, 3669-3669.	1.4	0
264	Dissecting the role of CXCR7 in Cell Trafficking of Endothelial-Cells and Endothelial-Progenitor-Cells in Multiple Myeloma,. Blood, 2011, 118, 3934-3934.	1.4	0
265	LNA Anti-MicroRNA-155: A Novel Therapeutic Strategy in Waldenstrom Macroglobulinemia and Chronic Lymphocytic Leukemia. Blood, 2011, 118, 2728-2728.	1.4	0
266	Deregulation of TNFRSF18 (GITR) Through Promoter CpG Island Methylation Induces Tumor Proliferation in Multiple Myeloma. Blood, 2011, 118, 2424-2424.	1.4	0
267	Multiple Myeloma-Derived Bone-Marrow Mesenchymal Stem Cells: Microrna-, Gene Expression-Profiling and Functional Characterization. Blood, 2012, 120, 1837-1837.	1.4	0
268	Metabolomic Profiling Identifies Mechanisms Regulating Hypoxia-Induced Drug Resistance in Multiple Myeloma. Blood, 2012, 120, 3944-3944.	1.4	0
269	Let-7 Microrna Family Members Regulate Cell Proliferation in Multiple Myeloma. Blood, 2012, 120, 570-570.	1.4	0
270	Proline-Rich Tyrosine Kinase (Pyk2) Promotes Tumor Progression In Multiple Myeloma Through Modulation Of Wnt/β-Catenin Signaling Pathway. Blood, 2013, 122, 3094-3094.	1.4	0

#	Article	IF	CITATIONS
271	Metabolomic Profiling Identifies Mechanisms Regulating Hypoxia-Induced Drug Resistance In Multiple Myeloma. Blood, 2013, 122, 121-121.	1.4	О
272	Class I PI3K Isoforms Exert a Differential Role On Survival and Cell Trafficking In Multiple Myeloma. Blood, 2013, 122, 3159-3159.	1.4	0
273	Extramedullary Disease In Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 1773-1773.	1.4	0
274	A Case-Control Epidemiological Study Of Waldenstrom Macroglobulinemia. Blood, 2013, 122, 1713-1713.	1.4	0
275	Methylation-Dependent Epigenetic Silencing Of Mir-152 and Mir-10b-5p Plays a Crucial Role In Modulating Tumor Progression In Multiple Myeloma. Blood, 2013, 122, 3751-3751.	1.4	0
276	Microrna-Dependent Modulation Of Osteogenesis In a 3D In Vitro Bone Marrow Model System Of Multiple Myeloma. Blood, 2013, 122, 3093-3093.	1.4	0
277	Exosomes in Hematologic Malignancies. , 2014, 11, .		0
278	Citron Rho-Interacting Serine/Threonine kinase (CIT) Is a Novel Therapeutic Target in Multiple Myeloma Cells. Blood, 2014, 124, 3430-3430.	1.4	0
279	Proline-Rich Tyrosine Kinase (Pyk2) Promotes Tumor Progression in Multiple Myeloma (MM) and Represents a Novel Target for Therapy in MM. Blood, 2014, 124, 2101-2101.	1.4	0
280	Prognostic Value of Circulating Exosomal microRNAs in 112 Patients with Multiple Myeloma. Blood, 2014, 124, 2056-2056.	1.4	0
281	MYC Regulation Via the LIN28B/Let-7 Axis in Multiple Myeloma. Blood, 2015, 126, 1755-1755.	1.4	0
282	A New Model for Studying the Dissemination of Myeloma Cells throughout the Bone Marrow Using Embryonic Zebrafish. Blood, 2015, 126, 915-915.	1.4	0
283	Whole Exome Sequencing and Targeted Sequencing Reveal the Heterogeneity of Genomic Evolution and Mutational Profile in Smoldering Multiple Myeloma. Blood, 2016, 128, 237-237.	1.4	0
284	Dual Conditional Loss of BLIMP-1 and p53 in B-Cells Drives B-Cell Lymphomagenesis. Blood, 2016, 128, 4169-4169.	1.4	0
285	In Vivo Analysis of Clonal Evolution of Multiple Myeloma. Blood, 2016, 128, 799-799.	1.4	0
286	Immunotherapy in Multiple Myeloma: The Era of CAR T Cell Therapy. , 2018, 15, .		0
287	Redefining Risks in Multiple Myeloma is Still a Work in Progress. , 2018, 15, .		0
288	When Does Monoclonal Gammopathy Acquire Significance?., 2018, 15,.		O

#	Article	IF	Citations
289	Can We Vaccinate Our Way Out of Multiple Myeloma Progression?. , 2018, 15, .		0
290	New Approaches to Multiple Myeloma. European Oncology and Haematology, 2018, 14, 18.	0.0	0
291	Evaluation of Re-Intensification of Daratumumab to Weekly or Biweekly Dosing Schedule. Blood, 2018, 132, 2024-2024.	1.4	0
292	Deciphering Clonal Evolution and Dissemination of Multiple Myeloma Cells In Vivo. Blood, 2018, 132, 55-55.	1.4	0
293	Evolving Areas of Consensus and Disagreement Among Experts in Treatment of Patients with Multiple Myeloma (MM). Blood, 2018, 132, 5664-5664.	1.4	0
294	In Vivo Modeling of Clonal Competition Using CRISPR-Based Gene Editing Reveals Novel Fitness Variables in Multiple Myeloma. Blood, 2018, 132, 57-57.	1.4	0
295	In Search of Missed Tumors: Next-Generation Sequencing for Minimal Residual Disease Detection in Multiple Myeloma Comes of Age. , 2019, 16 , .		0
296	lgL Translocations for Risk Stratification in Multiple Myeloma. , 2019, 16, .		0
297	The Microbiome: A New Variable in Multiple Myeloma Disease Progression. , 2019, 16, .		0
298	RewIRE($\hat{11\pm}$)ing the Unfolded Protein Response in Multiple Myeloma. , 2019, 16, .		0
299	XBP1s: Getting to the Roots of Multiple Myeloma. , 2019, 16, .		0
300	Multiple Myeloma Pathogenesis: The Role of Junb in Bone Marrow Angiogenesis. Blood, 2019, 134, 4341-4341.	1.4	0
301	The Transmembrane Receptor Roundabout 1 (ROBO1) Is Necessary for Multiple Myeloma Proliferation and Homing to the Bone Marrow Niche. Blood, 2019, 134, 507-507.	1.4	0
302	MYC Overexpressing Multiple Myeloma Are Dependent on GLS1. Blood, 2019, 134, 853-853.	1.4	0
303	Quantified Morphology in Diagnosis of Hematologic Malignancies. , 2020, 17, .		0
304	The Moving Target of When to Treat on the Myeloma Spectrum. , 2020, 17, .		0
305	Bispecific Antibodies in Multiple Myeloma: Do These T cell-Recruiting Antibodies Make a Difference?. , 2020, 17, .		0
306	Promising Preclinical Results for Immunotherapy in Multiple Myeloma. , 2020, 17, .		0

#	Article	IF	CITATIONS
307	Quality of Life, Psychological Distress, and Prognostic Awareness in Patients with Multiple Myeloma. Blood, 2021, 138, 4082-4082.	1.4	0
308	A Randomized Placebo-Controlled Phase 2 Study of Metformin for the Prevention of Progression of Monoclonal Gammopathy of Undetermined Significance and Low Risk Smoldering Multiple Myeloma. Blood, 2021, 138, 1659-1659.	1.4	0
309	B-PRISM (Precision Intervention Smoldering Myeloma): A Phase II Trial of Combination of Daratumumab, Bortezomib, Lenalidomide and Dexamethasone in High-Risk Smoldering Multiple Myeloma. Blood, 2021, 138, 4782-4782.	1.4	0
310	Single Cell Characterization of Myeloma and Its Precursor Conditions Reveals Transcriptional Signatures of Early Tumorigenesis. Blood, 2021, 138, 2219-2219.	1.4	0
311	A Phase I/II Study of Twice Weekly Ixazomib Plus Pomalidomide and Dexamethasone in Relapsed and Refractory Multiple Myeloma: Results from Phase I Dose Escalation Cohorts. Blood, 2020, 136, 1-2.	1.4	0
312	A Next Generation Liquid Biopsy Approach for Multiple Myeloma. Blood, 2020, 136, 33-33.	1.4	0
313	B-PRISM (Precision Intervention Smoldering Myeloma): A phase II trial of combination of daratumumab, bortezomib, lenalidomide, and dexamethasone in high-risk smoldering multiple myeloma Journal of Clinical Oncology, 2022, 40, 8040-8040.	1.6	O