Harald S. Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1130113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vagal afferent cholecystokinin receptor activation is required for glucagonâ€like peptideâ€1–induced satiation. Diabetes, Obesity and Metabolism, 2022, 24, 268-280.	4.4	11
2	Post-oral fat-induced satiation is mediated by endogenous CCK and GLP-1 in a fat self-administration mouse model. Physiology and Behavior, 2021, 234, 113315.	2.1	4
3	Intestinal sensing and handling of dietary lipids in gastric bypass–operated patients and matched controls. American Journal of Clinical Nutrition, 2020, 111, 28-41.	4.7	7
4	Intrapulmonary (i.pulmon.) Pull Immunization With the Tuberculosis Subunit Vaccine Candidate H56/CAF01 After Intramuscular (i.m.) Priming Elicits a Distinct Innate Myeloid Response and Activation of Antigen-Presenting Cells Than i.m. or i.pulmon. Prime Immunization Alone. Frontiers in Immunology, 2020, 11, 803.	4.8	15
5	The autocrine role of FGF21 in cultured adipocytes. Biochemical Journal, 2020, 477, 2477-2487.	3.7	13
6	Essentiality of n-6 fatty acids. Journal of Biological Chemistry, 2019, 294, 6692.	3.4	1
7	Nonâ€endocannabinoid <i>N</i> â€acylethanolamines and 2â€monoacylglycerols in the intestine. British Journal of Pharmacology, 2019, 176, 1443-1454.	5.4	42
8	Comparing olive oil and C4-dietary oil, a prodrug for the GPR119 agonist, 2-oleoyl glycerol, less energy intake of the latter is needed to stimulate incretin hormone secretion in overweight subjects with type 2 diabetes. Nutrition and Diabetes, 2018, 8, 2.	3.2	10
9	Delivery of amitriptyline by intravenous and intraperitoneal administration compared in the same animal by whole-body mass spectrometry imaging of a stable isotope labelled drug substance in mice. Expert Opinion on Drug Delivery, 2018, 15, 1157-1163.	5.0	8
10	Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats. Cell Metabolism, 2017, 25, 335-344.	16.2	108
11	Cryoâ€sectioning of mice for wholeâ€body imaging of drugs and metabolites with desorption electrospray ionization mass spectrometry imaging ―a simplified approach. Proteomics, 2016, 16, 1633-1641.	2.2	16
12	Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia. Scientific Reports, 2016, 6, 39571.	3.3	69
13	Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochemical Pharmacology, 2016, 119, 66-75.	4.4	40
14	GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy With FFA1 (GPR40). Endocrinology, 2016, 157, 4561-4569.	2.8	77
15	The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans. American Journal of Clinical Nutrition, 2015, 102, 548-555.	4.7	59
16	Sensing of triacylglycerol in the gut: different mechanisms for fatty acids and 2â€monoacylglycerol. Journal of Physiology, 2015, 593, 2097-2109.	2.9	17
17	Non-endocannabinoid N-Acylethanolamines and Monoacylglycerols: Old Molecules New Targets. , 2015, , 1-13.		3
18	Dietary Non-Esterified Oleic Acid Decreases the Jejunal Levels of Anorectic N-Acylethanolamines. PLoS ONE, 2014, 9, e100365.	2.5	15

#	Article	IF	CITATIONS
19	Classical endocannabinoidâ€ŀike compounds and their regulation by nutrients. BioFactors, 2014, 40, 363-372.	5.4	53
20	Evaluation of the immediate vascular stability of lipoprotein lipaseâ€generated 2â€monoacylglycerol in mice. BioFactors, 2014, 40, 596-602.	5.4	11
21	Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacological Research, 2014, 86, 18-25.	7.1	65
22	N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 652-662.	2.4	78
23	Displaced dualâ€mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes. Journal of Mass Spectrometry, 2013, 48, 361-366.	1.6	19
24	Comment on: Harte et al. High Fat Intake Leads to Acute Postprandial Exposure to Circulating Endotoxin in Type 2 Diabetic Subjects. Diabetes Care 2012;35:375–382. Diabetes Care, 2013, 36, e42-e42.	8.6	1
25	Effect of Diet on Tissue Levels of Palmitoylethanolamide. CNS and Neurological Disorders - Drug Targets, 2013, 12, 17-25.	1.4	23
26	Visualization by mass spectrometry of 2â€dimensional changes in rat brain lipids, including N â€acylphosphatidylethanolamines, during neonatal brain ischemia. FASEB Journal, 2012, 26, 2667-2673.	0.5	53
27	Metformin Stimulates FGF21 Expression in Primary Hepatocytes. Experimental Diabetes Research, 2012, 2012, 1-8.	3.8	50
28	GPR119 as a fat sensor. Trends in Pharmacological Sciences, 2012, 33, 374-381.	8.7	165
29	2-Oleoyl Glycerol Is a GPR119 Agonist and Signals GLP-1 Release in Humans. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1409-E1417.	3.6	238
30	Studies on the anorectic effect of N-acylphosphatidylethanolamine and phosphatidylethanolamine in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 508-512.	2.4	22
31	Investigations of the human endocannabinoid system in two subcutaneous adipose tissue depots in lean subjects and in obese subjects before and after weight loss. International Journal of Obesity, 2011, 35, 1377-1384.	3.4	38
32	Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB Journal, 2011, 25, 765-774.	0.5	114
33	Effect of the cannabinoid receptor-1 antagonist rimonabant on lipolysis in rats. European Journal of Pharmacology, 2010, 646, 38-45.	3.5	28
34	Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome. Journal of Endocrinology, 2010, 206, 287-296.	2.6	141
35	Pitfalls in the sample preparation and analysis of N-acylethanolamines. Journal of Lipid Research, 2010, 51, 3062-3073.	4.2	22
36	International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB ₁ and CB ₂ . Pharmacological Reviews, 2010, 62, 588-631.	16.0	1,425

#	Article	IF	CITATIONS
37	Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain. Experimental Neurology, 2010, 224, 48-55.	4.1	119
38	The Endocannabinoid System and Its Relevance for Nutrition. Annual Review of Nutrition, 2010, 30, 423-440.	10.1	113
39	New Biological and Clinical Roles for the n-6 and n-3 Fatty Acids. Nutrition Reviews, 2009, 52, 162-167.	5.8	28
40	N-acylethanolamines, anandamide and food intake. Biochemical Pharmacology, 2009, 78, 553-560.	4.4	132
41	Effect of synthetic and natural phospholipids on N-acylphosphatidylethanolamine-hydrolyzing phospholipase D activity. Chemistry and Physics of Lipids, 2009, 162, 53-61.	3.2	21
42	Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus. Neurochemistry International, 2009, 54, 199-204.	3.8	38
43	Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death. Journal of Neurochemistry, 2008, 76, 39-46.	3.9	89
44	The effect of dietary fish oil-supplementation to healthy young men on oxidative burst measured by whole blood chemiluminescence. British Journal of Nutrition, 2008, 99, 1230-1238.	2.3	6
45	Influence of dietary fatty acids on endocannabinoid and N-acylethanolamine levels in rat brain, liver and small intestine. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 200-212.	2.4	281
46	Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects. European Neuropsychopharmacology, 2008, 18, 826-834.	0.7	185
47	Iron supplement use among Danish pregnant women. Public Health Nutrition, 2007, 10, 1104-1110.	2.2	37
48	Increased lipids in non-lipogenic tissues are indicators of the severity of type 2 diabetes in mice. Prostaglandins Leukotrienes and Essential Fatty Acids, 2007, 76, 9-18.	2.2	12
49	In vivo and in vitro microdialysis sampling of free fatty acids. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1751-1756.	2.8	17
50	Changes in brain levels of <i>N</i> â€acylethanolamines and 2â€arachidonoylglycerol in focal cerebral ischemia in mice. Journal of Neurochemistry, 2007, 103, 1907-1916.	3.9	86
51	Intestinal levels of anandamide and oleoylethanolamide in food-deprived rats are regulated through their precursors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 143-150.	2.4	86
52	General obstetrics: Fish oil in various doses or flax oil in pregnancy and timing of spontaneous delivery: a randomised controlled trial. BJOG: an International Journal of Obstetrics and Gynaecology, 2006, 113, 536-543.	2.3	31
53	Endocannabinoids. European Journal of Lipid Science and Technology, 2006, 108, 877-889.	1.5	9
54	Effect of an unstirred layer on the membrane permeability of anandamide. Journal of Lipid Research, 2006, 47, 561-570.	4.2	18

#	Article	IF	CITATIONS
55	Endocannabinoid metabolism in human glioblastomas and meningiomas compared to human non-tumour brain tissue. Journal of Neurochemistry, 2005, 93, 299-309.	3.9	68
56	Membrane transport of anandamide through resealed human red blood cell membranes. Journal of Lipid Research, 2005, 46, 1652-1659.	4.2	38
57	N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1715, 49-56.	2.6	15
58	Food intake is inhibited by oral oleoylethanolamide. Journal of Lipid Research, 2004, 45, 1027-1029.	4.2	91
59	The Antiparasitic Compound Licochalcone A Is a Potent Echinocytogenic Agent That Modifies the Erythrocyte Membrane in the Concentration Range Where Antiplasmodial Activity Is Observed. Antimicrobial Agents and Chemotherapy, 2004, 48, 4067-4071.	3.2	55
60	Lipopolysaccharide-induced pulmonary inflammation is not accompanied by a release of anandamide into the lavage fluid or a down-regulation of the activity of fatty acid amide hydrolase. Life Sciences, 2004, 76, 461-472.	4.3	3
61	Brain levels of N-acylethanolamine phospholipids in mice during pentylenetetrazol-induced seizure. Lipids, 2003, 38, 387-390.	1.7	22
62	Which of the nâ^'3 FA should be called essential?. Lipids, 2003, 38, 889-891.	1.7	6
63	In vitro and in vivo aspects of N-acyl-phosphatidylethanolamine-containing liposomes. International Journal of Pharmaceutics, 2003, 254, 49-53.	5.2	9
64	Biosynthesis of endocannabinoids and their modes of action in neurodegenerative diseases. Neurotoxicity Research, 2003, 5, 183-199.	2.7	19
65	Binding of anandamide to bovine serum albumin. Journal of Lipid Research, 2003, 44, 1790-1794.	4.2	97
66	Growth Hormone-Mediated Breakdown of Body Fat: Effects of GH on Lipases in Adipose Tissue and Skeletal Muscle of Old Rats Fed Different Diets. Hormone and Metabolic Research, 2003, 35, 243-250.	1.5	32
67	Substantial species differences in relation to formation and degradation of N-acyl-ethanolamine phospholipids in heart tissue: an enzyme activity study. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 131, 475-482.	1.6	27
68	The Potential of the Essential Fatty Acid-Deficient Hairless Rat as a Psoriasis Screening Model for Topical Anti-Proliferative Drugs. Skin Pharmacology and Physiology, 2002, 15, 401-413.	2.5	4
69	Putative neuroprotective actions of N-acyl-ethanolamines. , 2002, 95, 119-126.		72
70	Fluctuations in human milk long-chain PUFA levels in relation to dietary fish intake. Lipids, 2002, 37, 237-244.	1.7	81
71	Determination of the Phospholipid Precursor of Anandamide and Other N-Acylethanolamine Phospholipids Before and After Sodium Azide-Induced Toxicity in Cultured Neocortical Neurons. Journal of Neurochemistry, 2002, 75, 861-871.	3.9	55
72	Blockade of cannabinoid CB ₁ receptor function protects against <i>in vivo</i> disseminating brain damage following NMDAâ€induced excitotoxicity. Journal of Neurochemistry, 2002, 82, 154-158.	3.9	76

#	Article	IF	CITATIONS
73	Characterization of Glutamate-Induced Formation of N-Acylphosphatidylethanolamine and N-Acylethanolamine in Cultured Neocortical Neurons. Journal of Neurochemistry, 2002, 69, 753-761.	3.9	81
74	The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Progress in Lipid Research, 2001, 40, 1-94.	11.6	887
75	Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. Journal of Neurochemistry, 2001, 78, 1415-1427.	3.9	197
76	N-Acylethanolamines and precursor phospholipids — relation to cell injury. Chemistry and Physics of Lipids, 2000, 108, 135-150.	3.2	214
77	Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain: a 31P NMR and enzyme activity study. Journal of Lipid Research, 2000, 41, 985-990.	4.2	71
78	A rapid phospholipase D assay using zirconium precipitation of anionic substrate phospholipids: application to N-acylethanolamine formation in vitro. Journal of Lipid Research, 2000, 41, 1532-1538.	4.2	30
79	Formation ofN-acyl-phosphatidylethanolamine andN-acylethanolamine (including anandamide) during glutamate-induced neurotoxicity. Lipids, 1999, 34, S327-S330.	1.7	43
80	Electrospray ionization mass spectrometric method for the determination of cannabinoid precursors:N-acylethanolamine phospholipids (NAPEs). Journal of Mass Spectrometry, 1999, 34, 761-767.	1.6	27
81	The subcellular localization of phospholipase D activities in rat Leydig cells. Molecular and Cellular Endocrinology, 1999, 152, 99-110.	3.2	8
82	N-acylphosphatidylethanolamine-hydrolysing phospholipase D lacks the ability to transphosphatidylate. FEBS Letters, 1999, 455, 41-44.	2.8	74
83	Accumulation of N-acyl-ethanolamine phospholipids in rat brains during post-decapitative ischemia: a 31P NMR study. Journal of Lipid Research, 1999, 40, 515-521.	4.2	45
84	Formation of N-Acyl-phosphatidylethanolamines and N-Acylethanolamines. Biochemical Pharmacology, 1998, 55, 719-725.	4.4	86
85	Arf and RhoA Regulate Both the Cytosolic and the Membrane-bound Phospholipase D from Human Placenta. Cellular Signalling, 1997, 9, 189-196.	3.6	18
86	Cell Swelling Activates Phospholipase A 2 in Ehrlich Ascites Tumor Cells. Journal of Membrane Biology, 1997, 160, 47-58.	2.1	70
87	Didecanoyl phosphatidylcholine is a superior substrate for assaying mammalian phospholipase D. Biochemical Journal, 1996, 319, 861-864.	3.7	26
88	Time dependent effects of two absorption enhancers on the nasal absorption of growth hormone in rabbits. International Journal of Pharmaceutics, 1996, 128, 239-250.	5.2	14
89	Erythrocyte levels compared with reported dietary intake of marine <i>n</i> -3 fatty acids in pregnant women. British Journal of Nutrition, 1995, 73, 387-395.	2.3	72
90	Gestation length and birth weight in relation to intake of marine <i>n</i> -3 fatty acids. British Journal of Nutrition, 1995, 73, 397-404.	2.3	94

#	Article	IF	CITATIONS
91	Differential Phospholipid-Labeling Suggests Two Subtypes of Phospholipase D in Rat Leydig Cells. Biochemical and Biophysical Research Communications, 1995, 217, 747-754.	2.1	9
92	Characterization and partial purification of phospholipase D from human placenta. Lipids and Lipid Metabolism, 1995, 1258, 169-176.	2.6	17
93	Glutamate stimulates the formation of N-acylphosphatidylethanolamine and N-acylphosphatidylethanolamine in cortical neurons in culture. Lipids and Lipid Metabolism, 1995, 1258, 303-308.	2.6	92
94	Cytoprotective effect of tocopherols in hepatocytes cultured with polyunsaturated fatty acids. Lipids, 1994, 29, 369-372.	1.7	14
95	Agents that increase phosphatidic acid inhibit the LH-induced testosterone production. Molecular and Cellular Endocrinology, 1994, 104, 229-235.	3.2	12
96	Inhibition of fatty acid synthesis in rat hepatocytes by exogenous polyunsaturated fatty acids is caused by lipid peroxidation. Lipids and Lipid Metabolism, 1993, 1166, 99-104.	2.6	18
97	Linoleic acid as a precursor for acylation of transducin, a retinol G protein?. Trends in Biochemical Sciences, 1993, 18, 164.	7.5	5
98	Gestational age in relation to marine n-3 fatty acids in maternal erythrocytes: A study of women in the Faroe Islands and Denmark. American Journal of Obstetrics and Gynecology, 1991, 164, 1203-1209.	1.3	89
99	Phorbol ester and vasopressin activate phospholipase D in leydig cells. Molecular and Cellular Endocrinology, 1991, 79, 157-165.	3.2	22
100	Arginine vasopressin stimulates phosphoinositide turnover in an enriched rat Leydig cell preparation. Molecular and Cellular Endocrinology, 1989, 61, 181-188.	3.2	7
101	Linoleic Acid and Epidermal Water Barrier. , 1989, , 333-341.		2
102	Inhibition by amiloride and by Na+-depletion of A23187-stimulated arachidonic acid and histamine release from rat mast cells. FEBS Letters, 1988, 240, 167-170.	2.8	13
103	Synergism between thapsigargin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate on the release of [14C]arachidonic acid and histamine from rat peritoneal mast cells. Biochemical Pharmacology, 1987, 36, 621-626.	4.4	20
104	Arginine-vasopressin stimulates the formation of phosphatidic acid in rat Leydig cells. FEBS Letters, 1987, 218, 93-96.	2.8	4
105	Apparent in vivo retroconversion of dietary arachidonic to linoleic acid in essential fatty acid-deficient rats. Lipids and Lipid Metabolism, 1986, 878, 284-287.	2.6	31
106	Urinary prostaglandin E2 excretion in EFA-deficient rats after ten days supplementation of ethyl arachidonate, ethyl linoleate, ethyl oleate and methyl columbinate. Progress in Lipid Research, 1986, 25, 693.	11.6	0
107	The essential nature of linoleic acid in mammals. Trends in Biochemical Sciences, 1986, 11, 263-265.	7.5	47
108	Urinary Excretion of Arginine-Vasopressin and Prostaglandin E2 in Essential Fatty Acid-Deficient Rats after Oral Supplementation with Unsaturated Fatty Acid Esters. Journal of Nutrition, 1986, 116, 198-203.	2.9	2

#	Article	IF	CITATIONS
109	The Effect of a Single Oral Dose of Ethyl Linoleate on Urinary Prostaglandin E2 Excretion in Essential Fatty Acid-Deficient Rats. Journal of Nutrition, 1985, 115, 39-44.	2.9	8
110	Increased concentration of vasopressin in plasma of essential fatty acid-deficient rats. Nutrition Research, 1985, 5, 395-403.	2.9	4
111	Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and ݱ-linolenate. Lipids and Lipid Metabolism, 1985, 834, 357-363.	2.6	164
112	Urinary prostaglandin E2 and vasopressin excretion in essential fatty acid-deficient rats: Effect of linolenic acid supplementation. Lipids, 1983, 18, 682-690.	1.7	44
113	Extremely decreased release of prostaglandin E2-like activity from chopped lung of ethyl linolenate-supplemented rats. Lipids, 1983, 18, 691-695.	1.7	18
114	[26] Purification and assay of 15-ketoprostaglandin Δ13-reductase from bovine lung. Methods in Enzymology, 1982, 86, 156-163.	1.0	10
115	Essential fatty acid-supplemented diet decreases renal excretion of immunoreactive arginine-vasopressin in essential fatty acid-deficient rats. Lipids, 1982, 17, 321-322.	1.7	10
116	Essential fatty acid supplemented diet increases renal excretion of prostaglandin E2 and water in essential fatty acid deficient rats. Lipids, 1981, 16, 849-854.	1.7	38
117	Glutathione-prostaglandin A1 conjugate as substrate in the purification of prostaglandin 9-ketoreductase from rabbit kidney. Prostaglandins, 1980, 20, 735-746.	1.2	11
118	Metabolism of prostaglandin E1 and of glutathione conjugate of prostaglandin A1 (GSH-prostaglandin) Tj ETQqC	0.0 rgBT 2.6	/Overlock 10
119	Purification and characterization of a 15-ketoprostaglandin δ13-reductase from bovine lung. Lipids and Lipid Metabolism, 1979, 574, 136-145.	2.6	25
120	Separation of prostaglandin metabolites on sephadex LH 20 columns. Prostaglandins, 1978, 16, 311-318.	1.2	4
121	15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats. Lipids and Lipid Metabolism, 1978, 529, 230-236.	2.6	10

122	Elimination of low steady-state concentrations of [5,6-3H2]prostaglandin E1 in the pulmonary and the systemic circulations of anaesthetized rats. Lipids and Lipid Metabolism, 1977, 489, 403-414.	2.6	12
123	15-Hydroxyprostaglandin dehydrogenase. A review. Prostaglandins, 1976, 12, 647-679.	1.2	206
124	Inhibition by indomethacin and aspirin of 15-hydroxy-prostaglandin dehydrogenase. Prostaglandins, 1974, 8, 95-105.	1.2	64

8