Chen-Yu Tsao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11301118/publications.pdf Version: 2024-02-01

CHEN-YU TSAO

#	Article	IF	CITATIONS
1	Cyclic AMP (cAMP) and cAMP Receptor Protein Influence both Synthesis and Uptake of Extracellular Autoinducer 2 in Escherichia coli. Journal of Bacteriology, 2005, 187, 2066-2076.	2.2	164
2	Autonomous induction of recombinant proteins by minimally rewiring native quorum sensing regulon of E. coli. Metabolic Engineering, 2010, 12, 291-297.	7.0	125
3	Electroaddressing of Cell Populations by Coâ€Deposition with Calcium Alginate Hydrogels. Advanced Functional Materials, 2009, 19, 2074-2080.	14.9	115
4	Cross Species Quorum Quenching Using a Native Al-2 Processing Enzyme. ACS Chemical Biology, 2010, 5, 223-232.	3.4	103
5	Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nature Communications, 2019, 10, 4129.	12.8	91
6	Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation. Lab on A Chip, 2011, 11, 2316.	6.0	68
7	Autonomous bacterial localization and gene expression based on nearby cell receptor density. Molecular Systems Biology, 2013, 9, 636.	7.2	65
8	Electroaddressing Functionalized Polysaccharides as Model Biofilms for Interrogating Cell Signaling. Advanced Functional Materials, 2012, 22, 519-528.	14.9	61
9	Biofabricating Multifunctional Soft Matter with Enzymes and Stimuliâ€Responsive Materials. Advanced Functional Materials, 2012, 22, 3004-3012.	14.9	54
10	A stochastic model of Escherichia coli Alâ€⊋ quorum signal circuit reveals alternative synthesis pathways. Molecular Systems Biology, 2006, 2, 67.	7.2	53
11	Biofabrication of stratified biofilm mimics for observation and control of bacterial signaling. Biomaterials, 2012, 33, 5136-5143.	11.4	46
12	Directed assembly of a bacterial quorum. ISME Journal, 2016, 10, 158-169.	9.8	44
13	Electrochemical Measurement of the β-Galactosidase Reporter from Live Cells: A Comparison to the Miller Assay. ACS Synthetic Biology, 2016, 5, 28-35.	3.8	44
14	Using a Redox Modality to Connect Synthetic Biology to Electronics: Hydrogelâ€Based Chemoâ€Electro Signal Transduction for Molecular Communication. Advanced Healthcare Materials, 2017, 6, 1600908.	7.6	44
15	Connecting Biology to Electronics: Molecular Communication via Redox Modality. Advanced Healthcare Materials, 2017, 6, 1700789.	7.6	40
16	Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces. Lab on A Chip, 2013, 13, 1854.	6.0	39
17	Biological nanofactories facilitate spatially selective capture and manipulation of quorum sensing bacteria in a bioMEMS device. Lab on A Chip, 2010, 10, 1128.	6.0	35
18	Distal modulation of bacterial cell–cell signalling in a synthetic ecosystem using partitioned microfluidics. Lab on A Chip, 2015, 15, 1842-1851.	6.0	34

CHEN-YU TSAO

#	Article	IF	CITATIONS
19	Nano-guided cell networks as conveyors of molecular communication. Nature Communications, 2015, 6, 8500.	12.8	33
20	Engineering bacterial motility towards hydrogen-peroxide. PLoS ONE, 2018, 13, e0196999.	2.5	31
21	Magnetic nanofactories: Localized synthesis and delivery of quorum-sensing signaling molecule autoinducer-2 to bacterial cell surfaces. Metabolic Engineering, 2007, 9, 228-239.	7.0	30
22	Biofabrication of antibodies and antigens via IgGâ€binding domain engineered with activatable pentatyrosine proâ€ŧag. Biotechnology and Bioengineering, 2009, 103, 231-240.	3.3	30
23	Redox-Based Synthetic Biology Enables Electrochemical Detection of the Herbicides Dicamba and Roundup via Rewired <i>Escherichia coli</i> . ACS Sensors, 2019, 4, 1180-1184.	7.8	29
24	Evolved Quorum Sensing Regulator, LsrR, for Altered Switching Functions. ACS Synthetic Biology, 2014, 3, 210-219.	3.8	28
25	Quorum Sensing Desynchronization Leads to Bimodality and Patterned Behaviors. PLoS Computational Biology, 2016, 12, e1004781.	3.2	26
26	Functionalizing Soft Matter for Molecular Communication. ACS Biomaterials Science and Engineering, 2015, 1, 320-328.	5.2	24
27	Selective assembly and functionalization of miniaturized redox capacitor inside microdevices for microbial toxin and mammalian cell cytotoxicity analyses. Lab on A Chip, 2018, 18, 3578-3587.	6.0	24
28	Biological Nanofactories Target and Activate Epithelial Cell Surfaces for Modulating Bacterial Quorum Sensing and Interspecies Signaling. ACS Nano, 2010, 4, 6923-6931.	14.6	21
29	Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria. Carbohydrate Polymers, 2018, 195, 505-514.	10.2	21
30	Conferring biological activity to native spider silk: A biofunctionalized proteinâ€based microfiber. Biotechnology and Bioengineering, 2017, 114, 83-95.	3.3	20
31	Chitosan Fibers: Versatile Platform for Nickel-Mediated Protein Assembly. Biomacromolecules, 2008, 9, 1417-1423.	5.4	19
32	Single-Step Synthesis of Alginate Microgels Enveloped with a Covalent Polymeric Shell: A Simple Way to Protect Encapsulated Cells. ACS Applied Materials & Interfaces, 2021, 13, 18432-18442.	8.0	19
33	LuxS Coexpression Enhances Yields of Recombinant Proteins in <i>Escherichia coli</i> in Part through Posttranscriptional Control of GroEL. Applied and Environmental Microbiology, 2011, 77, 2141-2152.	3.1	18
34	Modular construction of multi-subunit protein complexes using engineered tags and microbial transglutaminase. Metabolic Engineering, 2016, 38, 1-9.	7.0	17
35	Mediated Electrochemistry to Mimic Biology's Oxidative Assembly of Functional Matrices. Advanced Functional Materials, 2020, 30, 2001776.	14.9	17
36	Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis. Colloids and Surfaces B: Biointerfaces, 2018, 169, 470-477.	5.0	15

CHEN-YU TSAO

#	Article	IF	CITATIONS
37	Biofabricating Functional Soft Matter Using Protein Engineering to Enable Enzymatic Assembly. Bioconjugate Chemistry, 2018, 29, 1809-1822.	3.6	14
38	Coupling Self-Assembly Mechanisms to Fabricate Molecularly and Electrically Responsive Films. Biomacromolecules, 2019, 20, 969-978.	5.4	14
39	Interactive Materials for Bidirectional Redoxâ€Based Communication. Advanced Materials, 2021, 33, e2007758.	21.0	14
40	Integrated biofabrication for electroâ€addressed inâ€film bioprocessing. Biotechnology Journal, 2012, 7, 428-439.	3.5	13
41	Incorporating LsrK Alâ $\in 2$ quorum quenching capability in a functionalized biopolymer capsule. Biotechnology and Bioengineering, 2018, 115, 278-289.	3.3	12
42	Development of the quorum sensing biotechnological toolbox. Current Opinion in Chemical Engineering, 2012, 1, 396-402.	7.8	11
43	Simple, rapidly electroassembled thiolated PEGâ€based sensor interfaces enable rapid interrogation of antibody titer and glycosylation. Biotechnology and Bioengineering, 2021, 118, 2744-2758.	3.3	8
44	Focusing quorum sensing signalling by nanoâ€nagnetic assembly. Environmental Microbiology, 2018, 20, 2585-2597.	3.8	7
45	A simple and reusable bilayer membrane-based microfluidic device for the study of gradient-mediated bacterial behaviors. Biomicrofluidics, 2017, 11, 044114.	2.4	6
46	An immune magnetic nano-assembly for specifically amplifying intercellular quorum sensing signals. Colloids and Surfaces B: Biointerfaces, 2018, 172, 197-206.	5.0	6
47	A Redox-Based Autoinduction Strategy to Facilitate Expression of 5xCys-Tagged Proteins for Electrobiofabrication. Frontiers in Microbiology, 2021, 12, 675729.	3.5	5
48	Parsed synthesis of pyocyanin via co-culture enables context-dependent intercellular redox communication. Microbial Cell Factories, 2021, 20, 215.	4.0	5
49	Data on biochemical fluxes generated from biofabricated enzyme complexes assembled through engineered tags and microbial transglutaminase. Data in Brief, 2016, 8, 1031-1035.	1.0	4
50	Construction of a cell-based sensor for the detection of autoinducer-2. , 2012, , .		0
51	Developing a cell-based sensor for the detection of Autoinducer-2. , 2013, , .		0