
Daniel J Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11300916/publications.pdf Version: 2024-02-01

DANIEL I KLEIN

#	Article	lF	CITATIONS
1	Redefining the Histone Deacetylase Inhibitor Pharmacophore: High Potency with No Zinc Cofactor Interaction. ACS Medicinal Chemistry Letters, 2021, 12, 540-547.	2.8	9
2	Discovery of Ethyl Ketone-Based Highly Selective HDACs 1, 2, 3 Inhibitors for HIV Latency Reactivation with Minimum Cellular Potency Serum Shift and Reduced hERG Activity. Journal of Medicinal Chemistry, 2021, 64, 4709-4729.	6.4	7
3	Discovery of macrocyclic HDACs 1, 2, and 3 selective inhibitors for HIV latency reactivation. Bioorganic and Medicinal Chemistry Letters, 2021, 47, 128168.	2.2	6
4	Targeting RNA with Small Molecules: Identification of Selective, RNA-Binding Small Molecules Occupying Drug-Like Chemical Space. SLAS Discovery, 2020, 25, 384-396.	2.7	73
5	Discovery of Highly Selective and Potent HDAC3 Inhibitors Based on a 2-Substituted Benzamide Zinc Binding Group. ACS Medicinal Chemistry Letters, 2020, 11, 2476-2483.	2.8	27
6	Identification of potent inhibitors of the sortilin-progranulin interaction. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127403.	2.2	5
7	Selective Class I HDAC Inhibitors Based on Aryl Ketone Zinc Binding Induce HIV-1 Protein for Clearance. ACS Medicinal Chemistry Letters, 2020, 11, 1476-1483.	2.8	21
8	Development of a selective HDAC inhibitor aimed at reactivating the HIV latent reservoir. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127367.	2.2	14
9	Discovery of ethyl ketone-based HDACs 1, 2, and 3 selective inhibitors for HIV latency reactivation. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127197.	2.2	19
10	Augmenting Hit Identification by Virtual Screening Techniques in Small Molecule Drug Discovery. Journal of Chemical Information and Modeling, 2020, 60, 4144-4152.	5.4	18
11	Discovery of MK-8719, a Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies. Journal of Medicinal Chemistry, 2019, 62, 10062-10097.	6.4	87
12	Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry. ACS Chemical Biology, 2018, 13, 820-831.	3.4	78
13	Insights into activity and inhibition from the crystal structure of human O-GlcNAcase. Nature Chemical Biology, 2017, 13, 613-615.	8.0	75
14	Discovery of a Distinct Chemical and Mechanistic Class of Allosteric HIV-1 Integrase Inhibitors with Antiretroviral Activity. ACS Chemical Biology, 2017, 12, 2858-2865.	3.4	13
15	Structure of the Bacterial Deacetylase LpxC Bound to the Nucleotide Reaction Product Reveals Mechanisms of Oxyanion Stabilization and Proton Transfer. Journal of Biological Chemistry, 2013, 288, 34073-34080.	3.4	43
16	The <i>glmS</i> Ribozyme Tunes the Catalytically Critical p <i>K</i> _a of Its Coenzyme Glucosamine-6-phosphate. Journal of the American Chemical Society, 2011, 133, 14188-14191.	13.7	36
17	Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nature Structural and Molecular Biology, 2009, 16, 343-344.	8.2	160
18	Crystallization of the glmS Ribozyme-Riboswitch. Methods in Molecular Biology, 2009, 540, 129-139.	0.9	16

DANIEL J KLEIN

# ,	Article	IF	CITATIONS
19	Requirement of Helix P2.2 and Nucleotide G1 for Positioning the Cleavage Site and Cofactor of the glmS Ribozyme. Journal of Molecular Biology, 2007, 373, 178-189.	4.2	82
20	Essential Role of an Active-Site Guanine in <i>glmS</i> Ribozyme Catalysis. Journal of the American Chemical Society, 2007, 129, 14858-14859.	13.7	87
	Riboswitches: small-molecule recognition by gene regulatory RNAs. Current Opinion in Structural Biology, 2007, 17, 273-279.	5.7	140
22	Structural Basis of glmS Ribozyme Activation by Glucosamine-6-Phosphate. Science, 2006, 313, 1752-1756.	12.6	357
	The contribution of metal ions to the structural stability of the large ribosomal subunit. Rna, 2004, 10, 1366-1379.	3.5	275