
Haohan Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11299621/publications.pdf Version: 2024-02-01

Наонам М/П

#	Article	IF	CITATIONS
1	A Luminescent Microporous Metal–Organic Framework for the Fast and Reversible Detection of High Explosives. Angewandte Chemie - International Edition, 2009, 48, 2334-2338.	13.8	1,168
2	Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chemical Reviews, 2012, 112, 836-868.	47.7	985
3	Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO ₂ by Dual Functionalization of a <i>rht</i> ‶ype Metal–Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 1412-1415.	13.8	430
4	Tuning the Gate Opening Pressure of Metal–Organic Frameworks (MOFs) for the Selective Separation of Hydrocarbons. Journal of the American Chemical Society, 2012, 134, 15201-15204.	13.7	278
5	Enhancing Gas Adsorption and Separation Capacity through Ligand Functionalization of Microporous Metal–Organic Framework Structures. Chemistry - A European Journal, 2011, 17, 5101-5109.	3.3	176
6	Highly Selective CO ₂ Capture by a Flexible Microporous Metal–Organic Framework (MMOF) Material. Chemistry - A European Journal, 2010, 16, 13951-13954.	3.3	167
7	A flexible MMOF exhibiting high selectivity for CO2 over N2, CH4 and other small gases. Chemical Communications, 2010, 46, 9152.	4.1	111
8	â"PM3: A Multifunctional Microporous MOF with Recyclable Framework and High H2 Binding Energy. Inorganic Chemistry, 2009, 48, 7165-7173.	4.0	109
9	Understanding the Preferential Adsorption of CO ₂ over N ₂ in a Flexible Metal–Organic Framework. Journal of the American Chemical Society, 2011, 133, 12849-12857.	13.7	103
10	On the Synthesis and Adsorption Properties of Singleâ€Unitâ€Cell Hierarchical Zeolites Made by Rotational Intergrowths. Advanced Functional Materials, 2014, 24, 201-208.	14.9	101
11	A high connectivity metal–organic framework with exceptional hydrogen and methane uptake capacities. Chemical Science, 2012, 3, 3032.	7.4	75
12	Cu-TDPAT, an <i>rht</i> -Type Dual-Functional Metal–Organic Framework Offering Significant Potential for Use in H ₂ and Natural Gas Purification Processes Operating at High Pressures. Journal of Physical Chemistry C, 2012, 116, 16609-16618.	3.1	68
13	Molecular Hydrogen "Pairing―Interaction in a Metal Organic Framework System with Unsaturated Metal Centers (MOF-74). Journal of the American Chemical Society, 2010, 132, 14834-14848.	13.7	61
14	Synthesis and Structural Characterization of a 3-D Lithium Based Metalâ~'Organic Framework Showing Dynamic Structural Behavior. Crystal Growth and Design, 2010, 10, 2801-2805.	3.0	55
15	Anionic Gallium-Based Metalâ^'Organic Framework and Its Sorption and Ion-Exchange Properties. Inorganic Chemistry, 2011, 50, 208-212.	4.0	53
16	Encapsulated recyclable porous materials: an effective moisture-triggered fragrance release system. Chemical Communications, 2013, 49, 5724.	4.1	45
17	Spectroscopic Evidence for the Influence of the Benzene Sites on Tightly Bound H ₂ in Metalâ^'Organic Frameworks with Unsaturated Metal Centers: MOF-74-Cobalt. Journal of the American Chemical Society, 2011, 133, 4782-4784.	13.7	38
18	Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF. Microporous and Mesoporous Materials, 2016, 219, 186-189.	4.4	35

Haohan Wu

#	Article	IF	CITATIONS
19	Spectroscopic characterization of van der Waals interactions in a metal organic framework with unsaturated metal centers: MOF-74–Mg. Journal of Physics Condensed Matter, 2012, 24, 424203.	1.8	32
20	Direct structural evidence of commensurate-to-incommensurate transition of hydrocarbon adsorption in a microporous metal organic framework. Chemical Science, 2016, 7, 759-765.	7.4	24
21	Effect of Time, Temperature, and Kinetics on the Hysteretic Adsorption–Desorption of H ₂ , Ar, and N ₂ in the Metal–Organic Framework Zn ₂ (bpdc) ₂ (bpee). Langmuir, 2011, 27, 14169-14179.	3.5	23
22	Location and stability of europium in calcium sulfate and its relevance to rare earth recovery from phosphogypsum waste. American Mineralogist, 2016, 101, 1854-1861.	1.9	21
23	An investigation of structural and hydrogen adsorption properties of microporous metal organic framework (MMOF) materials. International Journal of Hydrogen Energy, 2012, 37, 10473-10478.	7.1	13
24	Zeolites: On the Synthesis and Adsorption Properties of Single-Unit-Cell Hierarchical Zeolites Made by Rotational Intergrowths (Adv. Funct. Mater. 2/2014). Advanced Functional Materials, 2014, 24, 200-200.	14.9	2
25	Inside Cover: Highly Selective CO2 Capture by a Flexible Microporous Metal-Organic Framework (MMOF) Material (Chem. Eur. J. 47/2010). Chemistry - A European Journal, 2010, 16, 13882-13882.	3.3	1