Tsuyoshi Nishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11297179/publications.pdf

Version: 2024-02-01

257450 526287 3,403 29 24 27 citations g-index h-index papers 30 30 30 3355 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MFSD2B is a sphingosine 1-phosphate transporter in erythroid cells. Scientific Reports, 2018, 8, 4969.	3.3	65
2	A Rapid Fluorescence Assay for Measuring Sphingosine-1-Phosphate Transporter Activity in Erythrocytes. Methods in Molecular Biology, 2017, 1697, 73-82.	0.9	0
3	Fluorescence-based rapid measurement of sphingosine-1-phosphate transport activity in erythrocytes. Journal of Lipid Research, 2016, 57, 2088-2094.	4.2	11
4	Sphingosine 1-Phosphate Signaling via Transporters in Zebrafish and Mice. , 2015, , 207-220.		0
5	Molecular and physiological functions of sphingosine 1-phosphate transporters. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 759-765.	2.4	82
6	The functional roles of S1P in immunity. Journal of Biochemistry, 2012, 152, 305-311.	1.7	55
7	Mouse SPNS2 Functions as a Sphingosine-1-Phosphate Transporter in Vascular Endothelial Cells. PLoS ONE, 2012, 7, e38941.	2.5	179
8	The Sphingosine 1-Phosphate Transporter, SPNS2, Functions as a Transporter of the Phosphorylated Form of the Immunomodulating Agent FTY720. Journal of Biological Chemistry, 2011, 286, 1758-1766.	3.4	135
9	Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice. Biochemical and Biophysical Research Communications, 2010, 395, 387-394.	2.1	32
10	Characterization of the ATP-dependent Sphingosine 1-Phosphate Transporter in Rat Erythrocytes. Journal of Biological Chemistry, 2009, 284, 21192-21200.	3.4	119
11	The Sphingolipid Transporter Spns2 Functions in Migration of Zebrafish Myocardial Precursors. Science, 2009, 323, 524-527.	12.6	372
12	Tissue specific expression of the splice variants of the mouse vacuolar proton-translocating ATPase a4 subunit. Biochemical and Biophysical Research Communications, 2007, 364, 1032-1036.	2.1	14
13	Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. Journal of Lipid Research, 2006, 47, 614-621.	4.2	146
14	ABCA5 Resides in Lysosomes, and ABCA5 Knockout Mice Develop Lysosomal Disease-Like Symptoms. Molecular and Cellular Biology, 2005, 25, 4138-4149.	2.3	76
15	Proton translocation driven by ATP hydrolysis in V-ATPases. FEBS Letters, 2003, 545, 76-85.	2.8	81
16	Interacting Helical Surfaces of the Transmembrane Segments of Subunits a and c′ of the Yeast V-ATPase Defined by Disulfide-mediated Cross-linking. Journal of Biological Chemistry, 2003, 278, 41908-41913.	3.4	47
17	The First Putative Transmembrane Segment of Subunit c" (Vma16p) of the Yeast V-ATPase Is Not Necessary for Function. Journal of Biological Chemistry, 2003, 278, 5821-5827.	3.4	36
18	Expression and Function of the Mouse V-ATPase d Subunit Isoforms. Journal of Biological Chemistry, 2003, 278, 46396-46402.	3.4	52

#	Article	IF	CITATION
19	Mutational Analysis of the Non-homologous Region of Subunit A of the Yeast V-ATPase. Journal of Biological Chemistry, 2003, 278, 12985-12991.	3.4	56
20	Structure, subunit function and regulation of the coated vesicle and yeast vacuolar (H+)-ATPases. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1555, 71-74.	1.0	41
21	The vacuolar (H+)-ATPases â€" nature's most versatile proton pumps. Nature Reviews Molecular Cell Biology, 2002, 3, 94-103.	37.0	1,091
22	Expression and Localization of the Mouse Homologue of the Yeast V-ATPase 21-kDa Subunit c′′ (Vma16p). Journal of Biological Chemistry, 2001, 276, 34122-34130.	3.4	24
23	The Amino-terminal Domain of the Vacuolar Proton-translocating ATPase a Subunit Controls Targeting and in Vivo Dissociation, and the Carboxyl-terminal Domain Affects Coupling of Proton Transport and ATP Hydrolysis. Journal of Biological Chemistry, 2001, 276, 47411-47420.	3.4	179
24	Yeast V-ATPase Complexes Containing Different Isoforms of the 100-kDa a-subunit Differ in Coupling Efficiency and in VivoDissociation. Journal of Biological Chemistry, 2001, 276, 17941-17948.	3.4	138
25	Molecular Cloning and Expression of Three Isoforms of the 100-kDa a Subunit of the Mouse Vacuolar Proton-translocating ATPase. Journal of Biological Chemistry, 2000, 275, 6824-6830.	3.4	131
26	Transmembrane Topography of the 100-kDa a Subunit (Vph1p) of the Yeast Vacuolar Proton-translocating ATPase. Journal of Biological Chemistry, 1999, 274, 14655-14661.	3.4	92
27	Metabotropic Glutamate Receptors Negatively Regulate Melatonin Synthesis in Rat Pinealocytes. Journal of Neuroscience, 1998, 18, 2056-2062.	3.6	84
28	Transcriptional Activation of H+/K+-ATPase Genes by Gastric GATA Binding Proteins. Journal of Biochemistry, 1997, 121, 922-929.	1.7	30
29	Functional Expression of a GLT-1 Type Na+ -Dependent Glutamate Transporter in Rat Pinealocytes. Journal of Neurochemistry, 1997, 69, 1491-1498.	3.9	35