P Soukiassian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11295069/publications.pdf

Version: 2024-02-01

109321 123424 4,247 134 35 61 citations h-index g-index papers 135 135 135 2262 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comment on â∈œAdsorption of hydrogen and hydrocarbon molecules on SiC(001)â∈•by Pollmann et al. (Surf. Sci. Rep. 69 (2014) 55–104). Surface Science, 2016, 644, L170-L171.	1.9	1
2	Nano-structures developing at the graphene/silicon carbide interface. Surface Science, 2011, 605, L6-L11.	1.9	7
3	Competing nucleation mechanisms and growth of InAsSbP quantum dots and nano-pits on the InAs(100) surface. Surface Science, 2010, 604, 1127-1134.	1.9	9
4	Multilayer epitaxial graphene grown on the surface; structure and electronic properties. Journal Physics D: Applied Physics, 2010, 43, 374006.	2.8	66
5	Epitaxial graphene: the material for graphene electronics. Physica Status Solidi - Rapid Research Letters, 2009, 3, A91.	2.4	45
6	First Direct Observation of a Nearly Ideal Graphene Band Structure. Physical Review Letters, 2009, 103, 226803.	7.8	399
7	Strain-induced InAsSbP islands and quantum dots grown by liquid phase epitaxy on a InAs(1 0 0) substrate. Journal Physics D: Applied Physics, 2008, 41, 162004.	2.8	24
8	Interaction of atomic hydrogen with the \hat{l}^2 -SiC(100) 3 \tilde{A} —2 surface and subsurface. Journal of Chemical Physics, 2007, 127, 164716.	3.0	10
9	Selective silver atom interaction at <mmi:math display="inline" xmins:mmi="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>β</mml:mi><mml:mtext>â^²</mml:mtext><mml:mi mathvariant="normal">Si</mml:mi><mml:mi mathvariant="normal">C</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>100</mml:mn><mml:mo>)</mml:mo>)(<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)<mml:mo>)</mml:mo><mml:mo>)</mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><</mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mrow></mml:mrow></mmi:math>	3 . 2 /mml:mo>	2
10	Atomic structure determination of the 3C-SiC (001) c ($4\tilde{A}$ —2) surface reconstruction: Experiment and theory. Physical Review B, 2007, 75, .	3.2	14
11	Structure of the 3C-SiC(100) 5x2 Surface Reconstruction Investigated by Synchrotron Radiation Based Grazing Incidence X-Ray Diffraction. Materials Science Forum, 2007, 556-557, 533-536.	0.3	O
12	Atomic Crack Defects Developing at Silicon Carbide Surfaces Studied by STM, Synchrotron Radiation-Based μ-spot XPS and LEEM. Materials Science Forum, 2007, 556-557, 481-486.	0.3	2
13	Negative differential resistance at Agâ^•Si nanowires on silicon carbide: From a passive to an active massively parallel architecture. Applied Physics Letters, 2007, 91, 223111.	3.3	10
14	ADVANCED MATERIALS RESEARCH WITH 3RD GENERATION SYNCHROTRON LIGHT. , 2007, , 317-328.		0
15	Engineering Cubic Silicon Carbide Surfaces Properties Using Hydrogen: Metallization versus Passivation. Applied Physics A: Materials Science and Processing, 2006, 82, 421-430.	2.3	8
16	Hydrogen Nanochemistry Achieving Clean and Pre-Oxidized Silicon Carbide Surface Metallization. Materials Science Forum, 2006, 527-529, 667-672.	0.3	0
17	From K atom pairs to K atomic chains: A semiconducting $2\tilde{A}-3$ to metallic $2\tilde{A}-1$ transition on the \hat{l}^2 -SiC(100) c(4 $\tilde{A}-2$) surface. Applied Physics Letters, 2006, 88, 022105.	3.3	6
18	Silicon carbide surface oxidation and SiO2/SiC interface formation investigated by soft X-ray synchrotron radiation. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 783-788.	1.7	29

#	Article	IF	Citations
19	Initial nitride formation at Siâ^•3C–SiC(100)3×2 interface by oxynitridation. Applied Physics Letters, 2005, 87, 193110.	3.3	3
20	Atomic cracks and $(23\tilde{A}-2\tilde{A}-3)$ -R30 \hat{A}° reconstruction at 6H-SiC(0001) surface. Applied Physics Letters, 2004, 85, 926-928.	3.3	9
21	Experimental and theoretical electronic structure determination of the $\hat{l}^2\hat{a}$ 'SiC(001)c(4 \hat{A} —2)surface reconstruction. Physical Review B, 2004, 69, .	3.2	14
22	Hydrogen-induced metallization of a preoxidized 3C-SiC(100)3×2 surface. Applied Physics Letters, 2004, 85, 4893-4895.	3.3	16
23	Photoelectron diffraction study of theSi-rich3Câ^'SiC(001)â€"(3×2)structure. Physical Review B, 2004, 70,	3.2	26
24	H-Induced Si-Rich 3C-Si(100) 3x2 Surface Metallization. Materials Science Forum, 2004, 457-460, 399-402.	0.3	5
25	Atomic Structure of Si-Rich 3C-SiC(001)-(3x2): a Photoelectron Diffraction Study. Materials Science Forum, 2003, 433-436, 579-582.	0.3	1
26	Atomic structure determination of the Si-rich \hat{I}^2 -SiC(001)3 \tilde{A} —2surface by grazing-incidence x-ray diffraction: $\hat{a} \in f A$ stress-driven reconstruction. Physical Review B, 2003, 68, .	3.2	35
27	High resolution synchrotron radiation-based x-ray photoemission spectroscopy study of the Si-rich \hat{l}^2 -SiC(100) 3 \hat{A} —2 surface oxidation. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1876.	1.6	6
28	Si-rich6H- and 4Hâ 'SiC (0001) 3Ã -3 surface oxidation and initial SiO2/SiC interface formation from 25 to 650 Å °C. Physical Review B, 2002, 65, .	3.2	79
29	Cubic silicon carbide surface reconstructions and Si (C) nanostructures at the atomic scale. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 96, 115-131.	3.5	28
30	Molecular-hydrogen interaction with \hat{l}^2 -SiC(100)3 \tilde{A} —2 andc(4 \tilde{A} —2) surfaces and with Si atomic lines. Physical Review B, 2001, 63, .	3.2	26
31	Si/6H–SiC(0001): An unexpected cubic 4×3 Si phase overlayer. Applied Physics Letters, 2001, 79, 767-769.	3.3	19
32	Atomic Scale Oxidation of a Complex System: O2/ \hat{l} ±-SiC(0001)-(3 \hat{A} —3). Physical Review Letters, 2001, 86, 4342-4345.	7.8	67
33	Self-organized 1D nanostructures on the \hat{l}^2 -SiC(100) surface: silicon atomic lines and dimer vacancy chains. Applied Surface Science, 2000, 162-163, 413-418.	6.1	11
34	Scanning tunneling microscopy evidence of background contamination-induced $2\tilde{A}-1$ ordering of the \hat{l}^2 -SiC(100) c($4\tilde{A}-2$) surface. Applied Surface Science, 2000, 166, 220-223.	6.1	19
35	1D electronic properties in temperature-induced c($4\tilde{A}$ —2) to $2\tilde{A}$ —1 transition on the \hat{I}^2 -SiC(100) surface. Applied Surface Science, 2000, 162-163, 559-564.	6.1	16
36	Deryckeet al.Reply:. Physical Review Letters, 2000, 85, 2650-2650.	7.8	0

#	Article	IF	CITATIONS
37	Imaging \hat{l}^2 -SiC(100)c(4 \tilde{A} —2)surface down dimers by empty electronic states scanning tunneling microscopy. Physical Review B, 2000, 62, 12660-12663.	3.2	13
38	Indentification of the 6H-SiC(0001) $3\tilde{A}$ —3 surface reconstruction core-level shifted components. Surface Science, 2000, 464, L691-L696.	1.9	18
39	Scanning tunneling microscopy investigation of the C-terminated \hat{I}^2 -SiC(100) c(2 \tilde{A} -2) surface reconstruction: dimer orientation, defects and antiphase boundaries. Surface Science, 2000, 446, L101-L107.	1.9	44
40	Comment on "Missing-Row Asymmetric-Dimer Reconstruction of SiC(100)-c(4×2)― Physical Review Letters, 1999, 82, 3721-3721.	7.8	17
41	SiO2/6H-SiC(0001)3×3 initial interface formation by Si overlayer oxidation. Applied Physics Letters, 1999, 75, 3360-3362.	3.3	42
42	Oxynitridation of cubic silicon carbide (100) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2629-2633.	2.1	14
43	Core-level photoemission spectroscopy of the $\hat{l}^2\hat{a}^2$ SiC(100)c(4 \hat{A} —2)surface. Physical Review B, 1999, 60, 16553-16557.	3.2	24
44	Atomic control of Si-terminated cubic silicon carbide (100) surfaces: morphology and self-organized atomic lines. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 61-62, 506-515.	3.5	23
45	High temperature dismantling of Si atomic lines on β-SiC(100). Surface Science, 1999, 440, L825-L830.	1.9	16
46	Reconstruction of the Si-terminated β-SiC(100) surface. Thin Solid Films, 1998, 318, 136-139.	1.8	12
47	Pairs of Si atomic lines self-assembling on the \hat{l}^2 -SiC(100) surface: an $8\tilde{A}$ —2 reconstruction. Surface Science, 1998, 401, L395-L400.	1.9	40
48	Composition and Structure of \hat{l}^2 -SiC(100)-(2 \tilde{A} — 2) Surfaces Monitored by Photoemission Spectroscopy using Synchrotron Radiation. Surface Review and Letters, 1998, 05, 213-217.	1.1	1
49	Carbon Atomic Chain Formation on thel̂²-SiC(100) Surface by Controlledsp→sp3Transformation. Physical Review Letters, 1998, 81, 5868-5871.	7.8	66
50	Atomic-scale self-propagation of a molecular reaction on a semiconductor surface: $O2/\hat{l}^2\hat{a}^3$ SiC(100) \hat{a}^3 A—2. Physical Review B, 1998, 57, R15108-R15111.	3.2	15
51	Structure of Prototypical Semiconductor Surfaces and Interfaces Investigated by Photoemission Extended X-Ray Absorption Fine Structure (PEXAFS). Surface Review and Letters, 1998, 05, 1057-1086.	1.1	4
52	Scanning Tunneling Microscopy Study of Single Domain \hat{l}^2 -SiC(100) Surfaces: Growth and Morphology. Surface Review and Letters, 1998, 05, 207-211.	1.1	1
53	Direct Observation of a \hat{I}^2 -SiC(100)-c(4 \tilde{A} —2)Surface Reconstruction. Physical Review Letters, 1997, 78, 907-910.	7.8	131
54	Highly Stable Si Atomic Line Formation on the \hat{l}^2 -SiC(100) Surface. Physical Review Letters, 1997, 79, 2498-2501.	7.8	95

#	Article	lF	Citations
55	Temperature-Induced Semiconductingc($4\tilde{A}$ —2) \hat{a} ‡"Metallic($2\tilde{A}$ —1)Reversible Phase Transition on the \hat{l}^2 -SiC(100) Surface. Physical Review Letters, 1997, 79, 3700-3703.	7.8	85
56	Chemistry and electronic properties of metal contacts on an organic molecular semiconductor. Applied Surface Science, 1997, 113-114, 291-298.	6.1	49
57	Advances in Cubic Silicon Carbide Surfaces and Self-Organized One Dimensional Sub-Nanoscale Objects. European Physical Journal Special Topics, 1997, 07, C6-101-C6-113.	0.2	9
58	Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. Physical Review B, 1996, 54, 13748-13758.	3.2	305
59	Sb or Cs covered InAs(110) surfaces: moving EF into conduction band and quantized 2D electron channel. Applied Surface Science, 1996, 104-105, 73-78.	6.1	19
60	Synchrotron radiation study of Cs/carbon-rich \hat{l}^2 -SiC(100) and Cs/silicon-rich \hat{l}^2 -SiC(100) surfaces: metallization and interface formation. Applied Surface Science, 1996, 104-105, 79-87.	6.1	14
61	Atomic Structure of theβ-SiC(100)-(3×2) Surface. Physical Review Letters, 1996, 77, 2013-2016.	7.8	101
62	Direct SiO2/βâ€SiC(100)3×2 interface formation from 25 °C to 500 °C. Applied Physics Letters, 19 2144-2146.	99 <u>6,</u> 68,	35
63	Chemistry, diffusion, and electronic properties of a metal/organic semiconductor contact: In/perylenetetracarboxylic dianhydride. Applied Physics Letters, 1996, 68, 217-219.	3.3	133
64	Identification of surface core-level shift origin for prototypical Cs/Si(100) $2\tilde{A}-1$ system by photoemission EXAFS. Physical Review B, 1995, 52, 12020-12025.	3.2	21
65	Direct and Rb-promotedSiOx/Î ² -SiC(100) interface formation. Physical Review B, 1995, 51, 14300-14310.	3.2	23
66	Na/carbon-rich \hat{l}^2 -SiC(100) surface: Initial interface formation and metallization. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 1591.	1.6	15
67	The role of alkali-metal layers in the oxidation of Si and Ge surfaces: a comparative study. Surface Science, 1995, 331-333, 375-380.	1.9	9
68	Na/InAs(110) interface formation at RT. Surface Science, 1995, 331-333, 641-645.	1.9	13
69	Schottky-barrier and interface formation of Cs/GaSb(110) and Rb/GaSb(110) at room temperature. Physical Review B, 1994, 49, 5490-5497.	3.2	29
70	Alkali-Metal-Induced Highest Fermi-Level Pinning Position above Semiconductor Conduction Band Minimum. Europhysics Letters, 1994, 26, 359-364.	2.0	55
71	Nitric oxide adsorption on the Si(111)7 \tilde{A} — 7 surface: Effect of potassium overlayers. Surface Science, 1994, 306, 313-326.	1.9	12
72	Sodium-induced H+ ion resonance on silicon surfaces. Surface Science, 1994, 302, L293-L298.	1.9	1

#	Article	IF	CITATIONS
73	Importance of defects and dopant nature in alkali metal/III–V semiconductor interface formation and promoted oxidation. Applied Surface Science, 1993, 68, 417-425.	6.1	6
74	Synchrotron radiation study of Rb/p-GaSb(110) interface formation and band bending at low temperature. Applied Surface Science, 1993, 68 , $427-432$.	6.1	4
75	O2/K/Ge(100) 2 \tilde{A} — 1 and O2/Cs/Ge(100) 2 \tilde{A} — 1: puzzling behavior of K and Cs in the oxidation of germanium. Applied Surface Science, 1993, 68, 433-438.	6.1	10
76	Photon- and catalysis-assisted silicon oxynitridation at room temperature: a comparative study. Applied Surface Science, 1993, 65-66, 654-660.	6.1	2
77	O 1s investigation of SiO2/Si interface formation using an alkali metal promoter. Applied Surface Science, 1993, 65-66, 840-846.	6.1	25
78	Electronic promotion of silicon oxynitridation at room temperature by alkali-metal catalysts. Applied Surface Science, 1993, 65-66, 847-853.	6.1	3
79	Promoted oxidation of aluminum thin films using an alkali metal catalyst. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 2186-2192.	2.1	14
80	Sâ€polarization photoemission extended xâ€ray absorption fine structure study of clean and adsorbate covered Si(100)2×1 surface. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 1823-1829.	2.1	0
81	Al2O3+x/Al interface formation by promoted oxidation using an alkali metal and removal of the catalyst. Applied Physics Letters, 1993, 62, 2437-2439.	3.3	8
82	Photon Stimulated H+ Ion Desorption Studies of Silicon Surfaces Covered by Alkali Metals. Springer Series in Surface Sciences, 1993, , 267-272.	0.3	0
83	Atomic structure, adsorbate ordering, and mode of growth of the K/Si(100)2 \tilde{A} —1 surface. Physical Review B, 1992, 46, 13471-13479.	3.2	70
84	GaP, GaAs, and InP nitridation at room temperature by N2 adsorption on (110) surfaces modified by alkali metals. Surface Science, 1992, 269-270, 915-919.	1.9	12
85	Logarithmic exposure dependence in alkali-metal promoted oxidation of elemental semiconductors. Surface Science, 1992, 269-270, 934-937.	1.9	7
86	Rb- and K-promoted nitridation of cleaved GaAs and InP surfaces at room temperature. Applied Surface Science, 1992, 56-58, 772-776.	6.1	9
87	Photoinduced oxynitride formation on semiconductors: NO on Si(111)2 $\tilde{A}-1$. Applied Surface Science, 1992, 56-58, 802-810.	6.1	4
88	Alkali Metal Ordering on Semiconductor Surfaces and Interfaces. Springer Series in Materials Science, 1992, , 197-214.	0.6	6
89	Unmonochromatized synchrotron radiation promoted silicon oxynitridation at room temperature. Journal of Applied Physics, 1991, 70, 2387-2394.	2.5	11
90	Structure of the Na/Si(100)2 \tilde{A} —1 and Cs/Si(100)2 \tilde{A} —1 interfaces investigated by photoemission extended x-ray-absorption fine structure. Physical Review B, 1991, 44, 5622-5628.	3.2	21

#	Article	IF	Citations
91	Insulator-semiconductor interface formation by electronic promotion using alkali metal and removal of the catalyst. Applied Surface Science, 1990, 41-42, 395-401.	6.1	9
92	Chemisorption of alkali metals (Na, K, Cs) on Ge(111) surface. Vacuum, 1990, 41, 571-574.	3.5	3
93	Alkali metal promoted oxidation of semiconductors: oxidation kinetics. Vacuum, 1990, 41, 678-680.	3.5	1
94	Catalytic Nitridation of a III-V Semiconductor Using Alkali Metal. Europhysics Letters, 1990, 12, 87-92.	2.0	12
95	Investigation of the Rb/Ge(111) and Na/Ge(111) interfaces by photoemission spectroscopy using synchrotron radiation. Physica Scripta, 1990, 41, 612-616.	2.5	3
96	Photon Stimulated Desorption (PSD) of positive ions from cesiated semiconductor surfaces using synchrotron radiation. Physica Scripta, 1990, 41, 935-938.	2.5	2
97	Room-temperature nitridation of gallium arsenide using alkali metal and molecular nitrogen. Physical Review B, 1990, 42, 3769-3772.	3.2	19
98	Low-coverage alkali-metal-induced surface structural changes in III-V semiconductors: Photoemission extended x-ray-absorption fine-structure study of the Na/InP(110) interface. Physical Review B, 1989, 39, 759-762.	3.2	22
99	Lowâ€coverage metalâ€induced structural changes in the substrate at metal/InP(110) interfaces determined by photoemission extended xâ€ray absorption fine structure. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 2024-2029.	2.1	2
100	Alkali-metal-induced interface resonant state on a semiconductor surface. Physical Review B, 1989, 40, 12570-12573.	3.2	16
101	Alkali-metal-promoted oxidation of the Si(100)2 \tilde{A} $\!-\!1$ surface: Coverage dependence and nonlocality. Physical Review B, 1989, 39, 12775-12782.	3.2	89
102	Electronic properties of alkali metal/silicon interfaces: A new picture. Surface Science Letters, 1989, 221, L759-L768.	0.1	4
103	Electronic properties of alkali metal/silicon interfaces: A new picture. Surface Science, 1989, 221, L759-L768.	1.9	73
104	New aspects in the oxidation kinetics of alkali-metal promoted group IV and III-V semiconductor surfaces. Surface Science, 1989, 224, 13-30.	1.9	46
105	Electronic and Structural Properties and Schottky Barrier Formation of Alkali Metal-Semiconductor Interfaces. NATO ASI Series Series B: Physics, 1989, , 465-488.	0.2	6
106	CH3Cl adsorption on a Si(100)2 \tilde{A} — 1 surface modified by alkali metal overlayer studied by soft X-ray photoemission using synchrotron radiation. Surface Science, 1988, 202, L568-L576.	1.9	9
107	Bonding at the K/Si(100) $2\tilde{A}$ —1 interface: A surface extended x-ray-absorption fine-structure study. Physical Review B, 1988, 37, 7115-7117.	3.2	110
108	Photostimulated desorption of negative Hâ^'ions from a cesiated W(100) surface. Physical Review B, 1988, 38, 8002-8005.	3.2	11

#	Article	IF	Citations
109	Electronic structure of ceramics and thinâ€film samples of highTcBi2Sr2CaCu2O8+Î′superconductors: Effects of Ar+sputtering, O2exposure, and Rb deposition. Applied Physics Letters, 1988, 53, 1970-1972.	3.3	25
110	Precursor molecular-oxygen state in the initial catalytic oxidation of the InP(110) surface modified by alkali metals. Physical Review B, 1988, 37, 6496-6499.	3.2	41
111	Summary Abstract: Catalytic oxidation of the Si(111)7 $\tilde{\text{A}}$ —7 surface by cesium. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 1567-1568.	2.1	O
112	Soft-x-ray photoemission study of chemisorption and Fermi-level pinning at the Cs/GaAs(110) and K/GaAs(110) interfaces. Physical Review B, 1988, 38, 7568-7575.	3.2	100
113	Thermal growth of SiO2-Si interfaces on a Si(111)7 $ ilde{A}$ —7 surface modified by cesium. Physical Review B, 1988, 37, 1315-1319.	3.2	68
114	Techniques for the Detection of Photodesorbed Negative Ions. Springer Series in Surface Sciences, 1988, , 94-97.	0.3	0
115	Catalytic Oxidation of Semiconductors by Alkali Metals. Physica Scripta, 1987, 35, 757-760.	2.5	16
116	Electronic properties of O_{2} on Cs or Na overlayers adsorbed on Si(100)21 from room temperature to 650°C. Physical Review B, 1987, 35, 4176-4179.	3.2	102
117	Electronic promoters and semiconductor oxidation: Alkali metals on Si(111) surfaces. Physical Review B, 1987, 35, 910-913.	3.2	98
118	Desorption of the catalyst agent after catalytic oxidation of semiconductors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1425-1427.	2.1	15
119	Si3N4‧i interface formation by catalytic nitridation using nitrogen exposures on alkali metal overlayers and removal of the catalyst: N2/Na/Si (100) 2ŗ1. Applied Physics Letters, 1987, 51, 346-348	. 3 . 3	11
120	Electronic promotion of silicon nitridation by alkali metals. Physical Review Letters, 1987, 59, 1488-1491.	7.8	60
121	Exceptionally large enhancement of InP (110) oxidation rate by cesium catalyst. Journal of Applied Physics, 1987, 61, 2679-2681.	2.5	36
122	Comment on "Cs on Si(111)2×1: Si surface state and Cs valence state― Surface Science, 1986, 172, L507-L508.	1.9	18
123	Comment on "Cs on Si(111)2×1: Si surface state and Cs valence state― Surface Science Letters, 1986, 172 L507-L508.	'0.1	3
124	Sodium-induced modifications in the electronic structure of the $W(100)$ surface. Journal of Physics C: Solid State Physics, 1986, 19, 2883-2891.	1.5	10
125	SiO2â€6i interface formation by catalytic oxidation using alkali metals and removal of the catalyst species. Journal of Applied Physics, 1986, 60, 4339-4341.	2.5	87
126	Unoccupied surface states on $W(001)$ and $Mo(001)$ by inverse photoemission. Physical Review B, 1986, 34, 8989-8992.	3.2	43

#	Article	IF	CITATION
127	Cs and Q2adsorption, Cs+O2co-adsorption on Mo(110): anomalous behaviour of electronic surface states studied by ARUPS using synchrotron radiation. Journal of Physics C: Solid State Physics, 1985, 18, 4785-4794.	1.5	24
128	Adsorbate-induced shifts of electronic surface states: Cs on the (100) faces of tungsten, molybdenum, and tantalum. Physical Review B, 1985, 31, 4911-4923.	3.2	155
129	Influence of a donor adsorbate (Cs) on W(100) and Ta(100) 4f surface core level shifts. Surface Science, 1985, 152-153, 290-296.	1.9	22
130	Comparison of the electronic properties of Cs and O coadsorption between W(100) and Mo(100). Surface Science, 1985 , $152-153$, $522-531$.	1.9	14
131	Electronic properties of the Cs and O co-adsorption on Mo(100) at room temperature. Journal of Physics C: Solid State Physics, 1984, 17, 1761-1773.	1.5	28
132	Cs adsorption and Cs and O coadsorption on Mo(100): LEED and AES studies. Surface Science, 1984, 146, 382-404.	1.9	41
133	Electron Spectroscopy on Adsorption of Cs on Transition Metals. Physica Scripta, 1983, T4, 110-112.	2.5	27
134	The electronic structure of Cs adsorbed on Mo(111). Solid State Communications, 1982, 44, 1375-1378.	1.9	38