List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1129373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. European Journal of Medicinal Chemistry, 2014, 76, 193-244.	5.5	370
2	Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. European Journal of Medicinal Chemistry, 2015, 90, 124-169.	5.5	317
3	Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. European Journal of Medicinal Chemistry, 2010, 45, 5200-5207.	5.5	265
4	Quinazolines and quinazolinones as ubiquitous structural fragments in medicinal chemistry: An update on the development of synthetic methods and pharmacological diversification. Bioorganic and Medicinal Chemistry, 2016, 24, 2361-2381.	3.0	202
5	Enantioselective Synthesis of Spiroindenes by Enolâ€Directed Rhodium(III)â€Catalyzed CH Functionalization and Spiroannulation. Angewandte Chemie - International Edition, 2015, 54, 13975-13979.	13.8	138
6	Functionalization of CH and CH Bonds: Synthesis of Spiroindenes by Enolateâ€Directed Rutheniumâ€Catalyzed Oxidative Annulation of Alkynes with 2â€Arylâ€1,3â€dicarbonyl Compounds. Angewandte Chemie - International Edition, 2012, 51, 12115-12119.	13.8	130
7	Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. European Journal of Medicinal Chemistry, 2014, 78, 167-177.	5.5	86
8	Triazolothiadiazoles and triazolothiadiazines – Biologically attractive scaffolds. European Journal of Medicinal Chemistry, 2013, 63, 854-868.	5.5	77
9	Structurally Diversified Heterocycles and Related Privileged Scaffolds as Potential Urease Inhibitors: A Brief Overview. Archiv Der Pharmazie, 2013, 346, 423-446.	4.1	75
10	Transition-metal-free synthesis of oxazoles: valuable structural fragments in drug discovery. RSC Advances, 2016, 6, 93016-93047.	3.6	73
11	Exploiting the Role of Molecular Electrostatic Potential, Deformation Density, Topology, and Energetics in the Characterization of S···N and Cl···N Supramolecular Motifs in Crystalline Triazolothiadiazoles. Crystal Growth and Design, 2016, 16, 1371-1386.	3.0	68
12	Developing hybrid molecule therapeutics for diverse enzyme inhibitory action: Active role of coumarin-based structural leads in drug discovery. Bioorganic and Medicinal Chemistry, 2018, 26, 3731-3762.	3.0	63
13	Oxadiazoles as Privileged Motifs for Promising Anticancer Leads: Recent Advances and Future Prospects. Archiv Der Pharmazie, 2014, 347, 1-20.	4.1	58
14	Synthesis of Benzopyrans by Pd(II)- or Ru(II)-Catalyzed C–H Alkenylation of 2-Aryl-3-hydroxy-2-cyclohexenones. Organic Letters, 2013, 15, 570-573.	4.6	55
15	Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorganic and Medicinal Chemistry, 2014, 22, 6163-6173.	3.0	54
16	Role of Mitochondrial Membrane Potential and Lactate Dehydrogenase A in Apoptosis. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 2048-2062.	1.7	50
17	A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorganic Chemistry, 2018, 77, 190-202.	4.1	48
18	Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors. Bioorganic Chemistry, 2016, 68, 177-186.	4.1	46

#	Article	IF	CITATIONS
19	Exploration of a library of triazolothiadiazole and triazolothiadiazine compounds as a highly potent and selective family of cholinesterase and monoamine oxidase inhibitors: design, synthesis, X-ray diffraction analysis and molecular docking studies. RSC Advances, 2015, 5, 21249-21267.	3.6	45
20	Combined in Vitro and in Silico Studies for the Anticholinesterase Activity and Pharmacokinetics of Coumarinyl Thiazoles and Oxadiazoles. Frontiers in Chemistry, 2018, 6, 61.	3.6	45
21	New frontiers in the transition-metal-free synthesis of heterocycles from alkynoates: an overview and current status. Organic Chemistry Frontiers, 2020, 7, 3734-3791.	4.5	43
22	Facile and expedient access to bis-coumarin–iminothiazole hybrids by molecular hybridization approach: synthesis, molecular modelling and assessment of alkaline phosphatase inhibition, anticancer and antileishmanial potential. RSC Advances, 2015, 5, 89919-89931.	3.6	42
23	FLPâ€Catalyzed Transfer Hydrogenation of Silyl Enol Ethers. Angewandte Chemie - International Edition, 2018, 57, 12356-12359.	13.8	41
24	Synthesis of spiroindanes by palladium-catalyzed oxidative annulation of non- or weakly activated 1,3-dienes involving C–H functionalization. Chemical Communications, 2015, 51, 2613-2616.	4.1	38
25	Identification of novel pyrazole–rhodanine hybrid scaffolds as potent inhibitors of aldose reductase: design, synthesis, biological evaluation and molecular docking analysis. RSC Advances, 2016, 6, 77688-77700.	3.6	38
26	Programmable late-stage Câ^'H bond functionalization enabled by integration of enzymes with chemocatalysis. Nature Catalysis, 2021, 4, 385-394.	34.4	35
27	Frustrated Lewis Pair (FLP)-Catalyzed Hydrogenation of Aza-Morita–Baylis–Hillman Adducts and Sequential Organo-FLP Catalysis. ACS Catalysis, 2017, 7, 7748-7752.	11.2	33
28	Investigation of quinoline-4-carboxylic acid as a highly potent scaffold for the development of alkaline phosphatase inhibitors: synthesis, SAR analysis and molecular modelling studies. RSC Advances, 2015, 5, 64404-64413.	3.6	32
29	Building molecular complexity through transition-metal-catalyzed oxidative annulations/cyclizations: Harnessing the utility of phenols, naphthols and 1,3-dicarbonyl compounds. Coordination Chemistry Reviews, 2019, 380, 440-470.	18.8	31
30	Exploring biological efficacy of coumarin clubbed thiazolo[3,2–b][1,2,4]triazoles as efficient inhibitors of urease: A biochemical and in silico approach. International Journal of Biological Macromolecules, 2020, 142, 345-354.	7.5	31
31	Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. Journal of Infection and Public Health, 2021, 14, 938-946.	4.1	31
32	Utilization of the common functional groups in bioactive molecules: Exploring dual inhibitory potential and computational analysis of keto esters against α-glucosidase and carbonic anhydrase-II enzymes. International Journal of Biological Macromolecules, 2021, 167, 233-244.	7.5	30
33	Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorganic and Medicinal Chemistry, 2019, 27, 115123.	3.0	28
34	New prospects for the development of selective inhibitors of α -glucosidase based on coumarin-iminothiazolidinone hybrids: Synthesis, in-vitro biological screening and molecular docking analysis. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 119-133.	5.3	26
35	Synthesis, Acetylcholinesterase and Alkaline Phosphatase Inhibition of Some New 1,2,4-Triazole and 1,3,4-Thiadiazole Derivatives. Australian Journal of Chemistry, 2012, 65, 1413.	0.9	24
36	Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer's Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules, 2021, 26, 6573.	3.8	24

#	Article	IF	CITATIONS
37	Influence of the diversified structural variations at the imine functionality of 4-bromophenylacetic acid derived hydrazones on alkaline phosphatase inhibition: synthesis and molecular modelling studies. RSC Advances, 2015, 5, 90806-90818.	3.6	23
38	One-pot access to a privileged library of six membered nitrogenous heterocycles through multi-component cascade approach. Research on Chemical Intermediates, 2016, 42, 5147-5196.	2.7	22
39	Histone Modifications and their Role in Epigenetics of Cancer. Current Medicinal Chemistry, 2022, 29, 2399-2411.	2.4	21
40	Exploiting the potential of aryl acetamide derived Zn(<scp>ii</scp>) complexes in medicinal chemistry: synthesis, structural analysis, assessment of biological profile and molecular docking studies. New Journal of Chemistry, 2016, 40, 7084-7094.	2.8	20
41	Exploration of quinolone and quinoline derivatives as potential anticancer agents. DARU, Journal of Pharmaceutical Sciences, 2019, 27, 613-626.	2.0	20
42	One-pot four-component synthesis of thiazolidin-2-imines using Cul/ZnII dual catalysis: A new class of acetylcholinesterase inhibitors. Bioorganic Chemistry, 2019, 84, 518-528.	4.1	19
43	Potent Inhibitors of Cholinesterases: A Biochemical and In Silico Approach. Molecules, 2021, 26, 656.	3.8	19
44	New triazolothiadiazole and triazolothiadiazine derivatives as kinesin Eg5 and HIV inhibitors: synthesis, QSAR and modeling studies. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2015, 70, 47-58.	0.7	18
45	Metal complexes of tosyl sulfonamides: design, X-ray structure, biological activities and molecular docking studies. RSC Advances, 2015, 5, 30125-30132.	3.6	18
46	Complex electronic interplay of σ-hole and π-hole interactions in crystals of halogen substituted 1,3,4-oxadiazol-2(3H)-thiones. CrystEngComm, 2017, 19, 3485-3498.	2.6	18
47	Exploration of thioxothiazolidinone–sulfonate conjugates as a new class of aldehyde/aldose reductase inhibitors: A synthetic and computational investigation. Bioorganic Chemistry, 2017, 75, 1-15.	4.1	18
48	Exploration of aroyl/heteroaroyl iminothiazolines featuring 2,4,5-trichlorophenyl moiety as a new class of potent, selective, and in vitro efficacious glucosidase inhibitors. Bioorganic Chemistry, 2017, 74, 134-144.	4.1	18
49	Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorganic Chemistry, 2020, 105, 104425.	4.1	18
50	Symmetrical aryl linked bis-iminothiazolidinones as new chemical entities for the inhibition of monoamine oxidases: Synthesis, in vitro biological evaluation and molecular modelling analysis. Bioorganic Chemistry, 2017, 70, 17-26.	4.1	17
51	Robust therapeutic potential of carbazole-triazine hybrids as a new class of urease inhibitors: A distinctive combination of nitrogen-containing heterocycles. Bioorganic Chemistry, 2020, 95, 103479.	4.1	17
52	Synthesis, inhibition studies against AChE and BChE, drug-like profiling, kinetic analysis and molecular docking studies of N-(4-phenyl-3-aroyl-2(3H)-ylidene) substituted acetamides. Journal of Molecular Structure, 2020, 1203, 127459.	3.6	17
53	New acetylphenol-based acyl thioureas broaden the scope of drug candidates for urease inhibition: synthesis, in vitro screening and in silico analysis. International Journal of Biological Macromolecules, 2022, 198, 157-167.	7.5	17
54	Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Topics in Current Chemistry, 2021, 379, 3.	5.8	16

#	Article	IF	CITATIONS
55	Preparation, Characterization, and Pharmacological Investigation of Withaferin-A Loaded Nanosponges for Cancer Therapy; In Vitro, In Vivo and Molecular Docking Studies. Molecules, 2021, 26, 6990.	3.8	16
56	Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition. Medicinal Chemistry, 2018, 14, 74-85.	1.5	15
57	A combined experimental and theoretical analysis of the solid-state supramolecular self-assembly of N-(2,4-dichlorophenyl)-1-naphthamide: Synthesis, anticholinesterase potential and molecular docking analysis. Journal of Molecular Structure, 2019, 1197, 458-470.	3.6	15
58	Synthesis, crystal structure and β-glucuronidase inhibition activity of some new hydrazinecarboxamides and their 1,2,4-triazole derivatives. Medicinal Chemistry Research, 2012, 21, 3885-3896.	2.4	14
59	A comparative experimental and theoretical investigation of hydrogen-bond, halogen-bond and π–π interactions in the solid-state supramolecular assembly of 2- and 4-formylphenyl arylsulfonates. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 816-829.	0.5	12
60	Diverse structural assemblies of U-shaped hydrazinyl-sulfonamides: experimental and theoretical analysis of non-covalent interactions stabilizing solid state conformations. CrystEngComm, 2019, 21, 1780-1793.	2.6	12
61	Discovery of urease inhibitory effect of sulfamate derivatives: Biological and computational studies. Bioorganic Chemistry, 2022, 119, 105545.	4.1	12
62	Synthesis and supramolecular self-assembly of thioxothiazolidinone derivatives driven by H-bonding and diverse ï€â€"hole interactions: A combined experimental and theoretical analysis. Journal of Molecular Structure, 2017, 1139, 209-221.	3.6	11
63	Probing the high potency of pyrazolyl pyrimidinetriones and thioxopyrimidinediones as selective and efficient non-nucleotide inhibitors of recombinant human ectonucleotidases. Bioorganic Chemistry, 2019, 88, 102893.	4.1	11
64	Similarities and differences in the crystal packing of methoxybenzyl and methoxyphenylethyl-1,3,4-oxadiazole-2(3H)-thiones. CrystEngComm, 2014, 16, 164-174.	2.6	10
65	Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure–Activity Relationships and Inhibitory Mechanism. Journal of Agricultural and Food Chemistry, 2021, 69, 6073-6086.	5.2	10
66	CRISPR-Cas9 Genome Engineering: Trends in Medicine and Health. Mini-Reviews in Medicinal Chemistry, 2022, 22, 410-421.	2.4	10
67	Synthesis, X-ray characterization, Hirshfeld surface analysis and DFT calculations on tetrazolyl-phenol derivatives: H-bonds vs C–H…π/π…π interactions. Journal of Molecular Structure, 2021, 1227, 129425.	3.6	9
68	Fabrication and Biological Assessment of Antidiabetic α-Mangostin Loaded Nanosponges: In Vitro, In Vivo, and In Silico Studies. Molecules, 2021, 26, 6633.	3.8	9
69	Fabrication and Evaluation of Voriconazole Loaded Transethosomal Gel for Enhanced Antifungal and Antileishmanial Activity. Molecules, 2022, 27, 3347.	3.8	9
70	Theoretical and computational insight into the supramolecular assemblies of Schiff bases involving hydrogen bonding and C H…π interactions: Synthesis, X-ray characterization, Hirshfeld surface analysis, anticancer activity and molecular docking analysis. Journal of Molecular Structure, 2021, 1235, 130223.	3.6	8
71	Inhibition of Aldose Reductase by Ginsenoside Derivatives via a Specific Structure Activity Relationship with Kinetics Mechanism and Molecular Docking Study. Molecules, 2022, 27, 2134.	3.8	8
72	Simple and Efficient One-Pot Synthesis, Spectroscopic Characterization and Crystal Structure of Methyl 5-(4-Chlorobenzoyloxy)-1-phenyl-1H-pyrazole-3-carboxylate. Crystals, 2012, 2, 967-973.	2.2	7

#	Article	IF	CITATIONS
73	FLPâ€Catalyzed Transfer Hydrogenation of Silyl Enol Ethers. Angewandte Chemie, 2018, 130, 12536-12539.	2.0	7
74	Synthesis and Molecular Structure of (E)-Methyl 3-(2-Hydroxyphenyl)-2-(Piperidine-1-Carbonyl) Acrylate Stabilized by Hydrogen Bonding and C-H…π Interactions. Physical Review & Research International, 2013, 3, 666-673.	0.2	7
75	Ethyl 2,6-Dimethoxybenzoate: Synthesis, Spectroscopic and X-ray Crystallographic Analysis. Crystals, 2012, 2, 521-527.	2.2	6
76	Investigation of solid state architectures in tetrazolyl tryptophol stabilized by crucial aromatic interactions and hydrogen bonding: Experimental and theoretical analysis. Journal of Molecular Structure, 2022, 1262, 133079.	3.6	6
77	Recent Advances in the Sustainable Synthesis of Quinazolines Using Earth-Abundant First Row Transition Metals. Current Organic Chemistry, 2020, 24, 1775-1792.	1.6	5
78	Centroid⋯centroid and hydrogen bond interactions as robust supramolecular units for crystal engineering: X-ray crystallographic, computational and urease inhibitory investigations of 1,2,4-triazolo[3,4-a]phthalazines. CrystEngComm, 0, , .	2.6	5
79	2-(4-Methylphenyl)-2-oxoethyl 3-bromobenzoate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3465-o3465.	0.2	4
80	Antiproliferative and Pro-Apoptotic Effects of Thiazolo[3,2–b][1,2,4]triazoles in Breast and Cervical Cancer Cells. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 2181-2191.	1.7	3
81	New Hybrid Scaffolds Based on Carbazole-Chalcones as Potent Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 1082-1091.	1.7	3
82	Editorial: Chemical Insights Into the Synthetic Chemistry of Quinazolines and Quinazolinones: Recent Advances. Frontiers in Chemistry, 2020, 8, 641321.	3.6	2
83	Machine Intelligence Techniques for the Identification and Diagnosis of COVID-19. Current Medicinal Chemistry, 2021, 28, 5268-5283.	2.4	2
84	Nanomedicines Targeting Heat Shock Protein 90 Gene Expression in the Therapy of Breast Cancer. ChemistrySelect, 2022, 7, .	1.5	2
85	Crystal structure of 2-(4-chlorophenyl)-2-oxoethyl 3-bromobenzoate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 301-304.	0.2	1
86	Antimicrobial profile of some novel keto esters: Synthesis, crystal structures and structure-activity relationship studies. Pakistan Journal of Pharmaceutical Sciences, 2016, 29, 39-49.	0.2	1
87	Antiproliferative and Proapoptotic Effect of <i>Daucus carota</i> in Cervical Cancer Cells: An <i>In Vitro</i> Approach. ChemistrySelect, 2022, 7, .	1.5	1
88	Preventive and Therapeutic Features of Combination Therapy for HIV. Frontiers in Clinical Drug Research - HIV, 2021, , 175-202.	0.0	0
89	Green Strategies for Sustainable C–H Bond Functionalizations. Current Organic Chemistry, 2021, 25, 2909-2911.	1.6	0
90	Evaluation of indole-picolinamide hybrid molecules as carbonic anhydrase-II inhibitors: Biological and computational studies. Journal of Molecular Structure, 2022, , 133048.	3.6	0

#	Article	IF	CITATIONS
91	Rational Design of Antiâ€Epileptic Peptides to Inhibit MAPK/MKPâ€2 Interactions for Epilepsy Therapeutics**. ChemistrySelect, 2022, 7, .	1.5	0