
## Douglas R Higgs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11291910/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Scalable in vitro production of defined mouse erythroblasts. PLoS ONE, 2022, 17, e0261950.                                                                                                        | 2.5  | 8         |
| 2  | The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin. Nature Communications, 2022, 13, .                          | 12.8 | 20        |
| 3  | Genetic and functional insights into CDA-I prevalence and pathogenesis. Journal of Medical Genetics, 2021, 58, 185-195.                                                                           | 3.2  | 9         |
| 4  | The relationship between genome structure and function. Nature Reviews Genetics, 2021, 22, 154-168.                                                                                               | 16.3 | 160       |
| 5  | The mouse alpha-globin cluster: a paradigm for studying genome regulation and organization.<br>Current Opinion in Genetics and Development, 2021, 67, 18-24.                                      | 3.3  | 21        |
| 6  | A remarkable case of HbH disease illustrates the relative contributions of the α-globin enhancers to gene expression. Blood, 2021, 137, 572-575.                                                  | 1.4  | 6         |
| 7  | Enhancers predominantly regulate gene expression during differentiation via transcription initiation.<br>Molecular Cell, 2021, 81, 983-997.e7.                                                    | 9.7  | 27        |
| 8  | A gain-of-function single nucleotide variant creates a new promoter which acts as an orientation-dependent enhancer-blocker. Nature Communications, 2021, 12, 3806.                               | 12.8 | 18        |
| 9  | Reactivation of a developmentally silenced embryonic globin gene. Nature Communications, 2021, 12, 4439.                                                                                          | 12.8 | 19        |
| 10 | Testing the super-enhancer concept. Nature Reviews Genetics, 2021, 22, 749-755.                                                                                                                   | 16.3 | 53        |
| 11 | Recapitulation of erythropoiesis in congenital dyserythropoietic anemia type I (CDA-I) identifies<br>defects in differentiation and nucleolar abnormalities. Haematologica, 2021, 106, 2960-2970. | 3.5  | 10        |
| 12 | Systematic integration of GATA transcription factors and epigenomes via IDEAS paints the regulatory landscape of hematopoietic cells. IUBMB Life, 2020, 72, 27-38.                                | 3.4  | 8         |
| 13 | Loss of Extreme Long-Range Enhancers in Human Neural Crest Drives a Craniofacial Disorder. Cell<br>Stem Cell, 2020, 27, 765-783.e14.                                                              | 11.1 | 101       |
| 14 | Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nature Communications, 2020, 11, 2722.                                                                        | 12.8 | 79        |
| 15 | An evolutionarily ancient mechanism for regulation of hemoglobin expression in vertebrate red cells.<br>Blood, 2020, 136, 269-278.                                                                | 1.4  | 16        |
| 16 | An integrative view of the regulatory and transcriptional landscapes in mouse hematopoiesis. Genome<br>Research, 2020, 30, 472-484.                                                               | 5.5  | 38        |
| 17 | A Dynamic Folded Hairpin Conformation Is Associated with α-Globin Activation in Erythroid Cells. Cell<br>Reports, 2020, 30, 2125-2135.e5.                                                         | 6.4  | 38        |
| 18 | ATR-16 syndrome: mechanisms linking monosomy to phenotype. Journal of Medical Genetics, 2020, 57, 414-421                                                                                         | 3.2  | 7         |

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nature Genetics, 2019, 51, 1024-1034.                                                                          | 21.4 | 60        |
| 20 | A revised model for promoter competition based on multi-way chromatin interactions at the α-globin<br>locus. Nature Communications, 2019, 10, 5412.                                                                                    | 12.8 | 60        |
| 21 | Molecular Basis and Genetic Modifiers of Thalassemia. Hematology/Oncology Clinics of North<br>America, 2018, 32, 177-191.                                                                                                              | 2.2  | 93        |
| 22 | A tissue-specific self-interacting chromatin domain forms independently of enhancer-promoter interactions. Nature Communications, 2018, 9, 3849.                                                                                       | 12.8 | 62        |
| 23 | Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains.<br>Nature Genetics, 2018, 50, 1744-1751.                                                                                           | 21.4 | 150       |
| 24 | Robust CRISPR/Cas9 Genome Editing of the HUDEP-2 Erythroid Precursor Line Using Plasmids and Single-Stranded Oligonucleotide Donors. Methods and Protocols, 2018, 1, 28.                                                               | 2.0  | 17        |
| 25 | Potential new approaches to the management of the Hb Bart's hydrops fetalis syndrome: the most severe form of α-thalassemia. Hematology American Society of Hematology Education Program, 2018, 2018, 353-360.                         | 2.5  | 25        |
| 26 | How to Tackle Challenging ChIP-Seq, with Long-Range Cross-Linking, Using ATRX as an Example.<br>Methods in Molecular Biology, 2018, 1832, 105-130.                                                                                     | 0.9  | 7         |
| 27 | How best to identify chromosomal interactions: a comparison of approaches. Nature Methods, 2017, 14, 125-134.                                                                                                                          | 19.0 | 124       |
| 28 | Selective silencing of α-globin by the histone demethylase inhibitor IOX1: a potentially new pathway for treatment of β-thalassemia. Haematologica, 2017, 102, e80-e84.                                                                | 3.5  | 33        |
| 29 | Functional characterisation of cis-regulatory elements governing dynamic <i>Eomes</i> expression in the early mouse embryo. Development (Cambridge), 2017, 144, 1249-1260.                                                             | 2.5  | 32        |
| 30 | An international registry of survivors with Hb Bart's hydrops fetalis syndrome. Blood, 2017, 129, 1251-1259.                                                                                                                           | 1.4  | 59        |
| 31 | The chromatin remodelling factor <scp>ATRX</scp> suppresses Râ€loops in transcribed telomeric repeats. EMBO Reports, 2017, 18, 914-928.                                                                                                | 4.5  | 99        |
| 32 | DNA methylation of intragenic CpG islands depends on their transcriptional activity during<br>differentiation and disease. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, E7526-E7535. | 7.1  | 125       |
| 33 | Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia.<br>Nature Communications, 2017, 8, 424.                                                                                       | 12.8 | 85        |
| 34 | Tissue-specific CTCF–cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nature Cell Biology, 2017, 19, 952-961.                                                                              | 10.3 | 179       |
| 35 | Between form and function: the complexity of genome folding. Human Molecular Genetics, 2017, 26, R208-R215.                                                                                                                            | 2.9  | 20        |
| 36 | Robust detection of chromosomal interactions from small numbers of cells using low-input<br>Capture-C. Nucleic Acids Research, 2017, 45, e184-e184.                                                                                    | 14.5 | 27        |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Understanding αâ€globin gene regulation and implications for the treatment of βâ€ŧhalassemia. Annals of<br>the New York Academy of Sciences, 2016, 1368, 16-24.                           | 3.8  | 44        |
| 38 | Genetic dissection of the α-globin super-enhancer in vivo. Nature Genetics, 2016, 48, 895-903.                                                                                            | 21.4 | 308       |
| 39 | MicroRNAs of the miR-290–295 Family Maintain Bivalency in Mouse Embryonic Stem Cells. Stem Cell<br>Reports, 2016, 6, 635-642.                                                             | 4.8  | 24        |
| 40 | Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to<br>KLF1 variants. Blood, 2016, 127, 1856-1862.                                           | 1.4  | 124       |
| 41 | Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin. Science, 2016, 351, 285-289.                                                                   | 12.6 | 260       |
| 42 | Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nature Methods, 2016, 13, 74-80.                                                                          | 19.0 | 225       |
| 43 | Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nature Communications, 2015, 6, 7538.                                            | 12.8 | 219       |
| 44 | ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes. Cell Reports, 2015, 11, 405-418.                                                 | 6.4  | 152       |
| 45 | α-Globin as a molecular target in the treatment of β-thalassemia. Blood, 2015, 125, 3694-3701.                                                                                            | 1.4  | 102       |
| 46 | An international effort to cure a global health problem: A report on the 19th Hemoglobin Switching<br>Conference. Experimental Hematology, 2015, 43, 821-837.                             | 0.4  | 7         |
| 47 | ATRX Dysfunction Induces Replication Defects in Primary Mouse Cells. PLoS ONE, 2014, 9, e92915.                                                                                           | 2.5  | 84        |
| 48 | Mutations in Krüppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression. Blood, 2014, 123, 1586-1595.                         | 1.4  | 76        |
| 49 | Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nature Genetics, 2014, 46, 205-212.                                         | 21.4 | 417       |
| 50 | Differential regulation of the α-globin locus by Krüppel-like factor 3 in erythroid and non-erythroid<br>cells. BMC Molecular Biology, 2014, 15, 8.                                       | 3.0  | 11        |
| 51 | The chromatin remodeller ATRX: a repeat offender in human disease. Trends in Biochemical Sciences,<br>2013, 38, 461-466.                                                                  | 7.5  | 103       |
| 52 | Analysis of Sequence Variation Underlying Tissue-specific Transcription Factor Binding and Gene<br>Expression. Human Mutation, 2013, 34, 1140-1148.                                       | 2.5  | 10        |
| 53 | Causes and Consequences of Chromatin Variation between Inbred Mice. PLoS Genetics, 2013, 9, e1003570.                                                                                     | 3.5  | 18        |
| 54 | High-resolution analysis of <i>cis</i> -acting regulatory networks at the α-globin locus. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120361. | 4.0  | 12        |

| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Homozygous mutations in a predicted endonuclease are a novel cause of congenital dyserythropoietic<br>anemia type I. Haematologica, 2013, 98, 1383-1387.         | 3.5  | 71        |
| 56 | The Molecular Basis of Â-Thalassemia. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a011718-a011718.                                                     | 6.2  | 106       |
| 57 | An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO Journal, 2012, 31, 317-329.      | 7.8  | 173       |
| 58 | Thalassaemia. Lancet, The, 2012, 379, 373-383.                                                                                                                   | 13.7 | 371       |
| 59 | RNA discrimination. Nature, 2012, 482, 310-311.                                                                                                                  | 27.8 | 104       |
| 60 | Intragenic Enhancers Act as Alternative Promoters. Molecular Cell, 2012, 45, 447-458.                                                                            | 9.7  | 237       |
| 61 | Nprl3 is required for normal development of the cardiovascular system. Mammalian Genome, 2012, 23, 404-415.                                                      | 2.2  | 38        |
| 62 | Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nature Structural and Molecular Biology, 2011, 18, 777-782. | 8.2  | 187       |
| 63 | Polycomb eviction as a new distant enhancer function. Genes and Development, 2011, 25, 1583-1588.                                                                | 5.9  | 78        |
| 64 | Global gene expression analysis of human erythroid progenitors. Blood, 2011, 117, e96-e108.                                                                      | 1.4  | 95        |
| 65 | Codanin-1 mutations in congenital dyserythropoietic anemia type 1 affect HP1α localization in erythroblasts. Blood, 2011, 117, 6928-6938.                        | 1.4  | 58        |
| 66 | Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach. Nature Genetics, 2011, 43, 295-301.  | 21.4 | 142       |
| 67 | Generation of bivalent chromatin domains during cell fate decisions. Epigenetics and Chromatin, 2011,<br>4, 9.                                                   | 3.9  | 54        |
| 68 | Functional significance of mutations in the Snf2 domain of ATRX. Human Molecular Genetics, 2011, 20, 2603-2610.                                                  | 2.9  | 46        |
| 69 | ATRX: Taming tandem repeats. Cell Cycle, 2010, 9, 4605-4606.                                                                                                     | 2.6  | 4         |
| 70 | α-thalassaemia. Orphanet Journal of Rare Diseases, 2010, 5, 13.                                                                                                  | 2.7  | 417       |
| 71 | Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions. Cell, 2010, 140, 678-691.                                                | 28.9 | 1,069     |
| 72 | ATR-X Syndrome Protein Targets Tandem Repeats and Influences Allele-Specific Expression in a Size-Dependent Manner. Cell, 2010, 143, 367-378.                    | 28.9 | 365       |

| n | 01 | 101 | 10 | וח        | 1000 |
|---|----|-----|----|-----------|------|
|   |    |     | AS | <b>IX</b> | IGGS |
| - | 00 |     |    |           | 1000 |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The Molecular Basis of α-Thalassemia: A Model for Understanding Human Molecular Genetics.<br>Hematology/Oncology Clinics of North America, 2010, 24, 1033-1054.                                                                  | 2.2  | 36        |
| 74 | The Molecular Basis of $\hat{l}$ + Thalassemia. , 2009, , 241-265.                                                                                                                                                               |      | 1         |
| 75 | Nuclear Factors That Regulate Erythropoiesis. , 2009, , 62-85.                                                                                                                                                                   |      | 3         |
| 76 | THE MOLECULAR, CELLULAR, AND GENETIC BASIS OF HEMOGLOBIN DISORDERS. , 2009, , 1-2.                                                                                                                                               |      | 0         |
| 77 | The Pathophysiology and Clinical Features of $\hat{I}\pm$ Thalassaemia. , 2009, , 266-295.                                                                                                                                       |      | 7         |
| 78 | Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21771-21776. | 7.1  | 77        |
| 79 | Research Highlights. Epigenomics, 2009, 1, 231-234.                                                                                                                                                                              | 2.1  | 0         |
| 80 | The role of Xâ€inactivation in the gender bias of patients with acquired αâ€thalassaemia and<br>myelodysplastic syndrome (ATMDS). British Journal of Haematology, 2009, 144, 538-545.                                            | 2.5  | 9         |
| 81 | Chromosome looping at the human $\hat{I}\pm$ -globin locus is mediated via the major upstream regulatory element (HS $\hat{a}^{\prime}$ 40). Blood, 2009, 114, 4253-4260.                                                        | 1.4  | 79        |
| 82 | Genetic Modulation of Sickle Cell Disease and Thalassemia. , 2009, , 638-657.                                                                                                                                                    |      | 4         |
| 83 | SPECIAL TOPICS IN HEMOGLOBINOPATHIES. , 2009, , 623-624.                                                                                                                                                                         |      | 0         |
| 84 | Population analysis of the alpha hemoglobin stabilizing protein (AHSP) gene identifies sequence variants that alter expression and function. American Journal of Hematology, 2008, 83, 103-108.                                  | 4.1  | 48        |
| 85 | Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. Journal of Cell Biology, 2008, 182, 1083-1097.                                                                            | 5.2  | 231       |
| 86 | Chapter 5 Longâ€Range Regulation of αâ€Globin Gene Expression. Advances in Genetics, 2008, 61, 143-173.                                                                                                                          | 1.8  | 30        |
| 87 | A large deletion in the human Â-globin cluster caused by a replication error is associated with an unexpectedly mild phenotype. Human Molecular Genetics, 2008, 17, 3084-3093.                                                   | 2.9  | 26        |
| 88 | Genetic complexity in sickle cell disease. Proceedings of the National Academy of Sciences of the<br>United States of America, 2008, 105, 11595-11596.                                                                           | 7.1  | 43        |
| 89 | Neuronal Death Resulting from Targeted Disruption of the Snf2 Protein ATRX Is Mediated by p53.<br>Journal of Neuroscience, 2008, 28, 12570-12580.                                                                                | 3.6  | 61        |
| 90 | A New Dawn for Stem-Cell Therapy. New England Journal of Medicine, 2008, 358, 964-966.                                                                                                                                           | 27.0 | 12        |

| #   | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Switching genes on and off in haemopoiesis. Biochemical Society Transactions, 2008, 36, 613-618.                                                                                                                                                        | 3.4  | 6         |
| 92  | The role of the polycomb complex in silencing α-globin gene expression in nonerythroid cells. Blood, 2008, 112, 3889-3899.                                                                                                                              | 1.4  | 51        |
| 93  | Long-range regulation of ?? globin gene expression during erythropoiesis. Current Opinion in<br>Hematology, 2008, 15, 176-183.                                                                                                                          | 2.5  | 66        |
| 94  | Switching Genes On and Off During Hematopoiesis Blood, 2008, 112, sci-17-sci-17.                                                                                                                                                                        | 1.4  | 0         |
| 95  | Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11939-11944.           | 7.1  | 138       |
| 96  | Manipulating the Mouse Genome to Engineer Precise Functional Syntenic ReplacementsÂwith Human<br>Sequence. Cell, 2007, 128, 197-209.                                                                                                                    | 28.9 | 150       |
| 97  | Defining the Cause of Skewed X-Chromosome Inactivation in X-Linked Mental Retardation by Use of a<br>Mouse Model. American Journal of Human Genetics, 2007, 80, 1138-1149.                                                                              | 6.2  | 32        |
| 98  | Tissue-specific histone modification and transcription factor binding in α globin gene expression.<br>Blood, 2007, 110, 4503-4510.                                                                                                                      | 1.4  | 69        |
| 99  | Using Genomics to Study How Chromatin Influences Gene Expression. Annual Review of Genomics and Human Genetics, 2007, 8, 299-325.                                                                                                                       | 6.2  | 33        |
| 100 | Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO Journal, 2007, 26, 2041-2051.                                                                                                 | 7.8  | 224       |
| 101 | Prevalence of erythrocyte haemoglobin H inclusions in unselected patients with clonal myeloid disorders. British Journal of Haematology, 2007, 139, 439-442.                                                                                            | 2.5  | 12        |
| 102 | A Regulatory SNP Causes a Human Genetic Disease by Creating a New Transcriptional Promoter.<br>Science, 2006, 312, 1215-1217.                                                                                                                           | 12.6 | 254       |
| 103 | A novel deletion causing $\hat{I}\pm$ thalassemia clarifies the importance of the major human alpha globin regulatory element. Blood, 2006, 107, 3811-3812.                                                                                             | 1.4  | 34        |
| 104 | A novel mutation in the last exon of ATRX in a patient with alpha-thalassemia myelodysplastic syndrome. European Journal of Haematology, 2006, 76, 432-435.                                                                                             | 2.2  | 10        |
| 105 | Loss of Atrx Affects Trophoblast Development and the Pattern of X-Inactivation in Extraembryonic<br>Tissues. PLoS Genetics, 2006, 2, e58.                                                                                                               | 3.5  | 140       |
| 106 | Coregulated human globin genes are frequently in spatial proximity when active. Journal of Cell<br>Biology, 2006, 172, 177-187.                                                                                                                         | 5.2  | 192       |
| 107 | Acquired α-thalassemia in association with myelodysplastic syndrome and other hematologic malignancies. Blood, 2005, 105, 443-452.                                                                                                                      | 1.4  | 95        |
| 108 | Annotation of cis-regulatory elements by identification, subclassification, and functional assessment<br>of multispecies conserved sequences. Proceedings of the National Academy of Sciences of the United<br>States of America, 2005, 102, 9830-9835. | 7.1  | 133       |

| #   | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | SW-ARRAY: a dynamic programming solution for the identification of copy-number changes in genomic DNA using array comparative genome hybridization data. Nucleic Acids Research, 2005, 33, 3455-3464.   | 14.5 | 87        |
| 110 | The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis.<br>Journal of Clinical Investigation, 2005, 115, 258-267.                                                | 8.2  | 169       |
| 111 | The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis.<br>Journal of Clinical Investigation, 2005, 115, 258-267.                                                | 8.2  | 119       |
| 112 | Acquired somatic ATRX mutations in myelodysplastic syndrome associated with α thalassemia (ATMDS) convey a more severe hematologic phenotype than germline ATRX mutations. Blood, 2004, 103, 2019-2026. | 1.4  | 84        |
| 113 | Ham-Wasserman Lecture. Hematology American Society of Hematology Education Program, 2004, 2004, 1-13.                                                                                                   | 2.5  | 25        |
| 114 | Comparative Analysis of the Â-Like Globin Clusters in Mouse, Rat, and Human Chromosomes Indicates a<br>Mechanism Underlying Breaks in Conserved Synteny. Genome Research, 2004, 14, 623-630.            | 5.5  | 29        |
| 115 | Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO Journal, 2004, 23, 2841-2852.                                                            | 7.8  | 193       |
| 116 | A conserved truncated isoform of the ATR-X syndrome protein lacking the SWI/SNF-homology domain.<br>Gene, 2004, 326, 23-34.                                                                             | 2.2  | 53        |
| 117 | Deletion of the α-globin gene cluster as a cause of acquired α-thalassemia in myelodysplastic syndrome.<br>Blood, 2004, 103, 1518-1520.                                                                 | 1.4  | 34        |
| 118 | Evaluation of alpha hemoglobin stabilizing protein (AHSP) as a genetic modifier in patients with β<br>thalassemia. Blood, 2004, 103, 3296-3299.                                                         | 1.4  | 102       |
| 119 | De novo deletion within the telomeric region flanking the human $\hat{I}_{\pm}$ globin locus as a cause of $\hat{I}_{\pm}$ thalassaemia. British Journal of Haematology, 2003, 120, 867-875.            | 2.5  | 36        |
| 120 | Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nature Genetics, 2003, 34, 157-165.                                                 | 21.4 | 505       |
| 121 | Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the α-thalassemia myelodysplasia syndrome (ATMDS). Nature Genetics, 2003, 34, 446-449.            | 21.4 | 132       |
| 122 | Deletion of the mouse α-globin regulatory element (HS â^26) has an unexpectedly mild phenotype. Blood,<br>2002, 100, 3450-3456.                                                                         | 1.4  | 53        |
| 123 | Characterization of a Widely Expressed Gene (LUC7-LIKE; LUC7L) Defining the Centromeric Boundary of the Human α-Globin Domain. Genomics, 2001, 71, 307-314.                                             | 2.9  | 31        |
| 124 | Monosomy for the most telomeric, gene-rich region of the short arm of human chromosome 16 causes minimal phenotypic effects. European Journal of Human Genetics, 2001, 9, 217-225.                      | 2.8  | 47        |
| 125 | Expression of α- and β-globin genes occurs within different nuclear domains in haemopoietic cells.<br>Nature Cell Biology, 2001, 3, 602-606.                                                            | 10.3 | 139       |
| 126 | Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster. Human Molecular Genetics, 2001, 10, 371-382.                              | 2.9  | 151       |

| #   | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16. Human Molecular Genetics, 2001, 10, 339-352.                                                                                                     | 2.9  | 81        |
| 128 | Molecular-clinical spectrum of the ATR-X syndrome. American Journal of Medical Genetics Part A, 2000, 97, 204-212.                                                                                                                                               | 2.4  | 208       |
| 129 | A nonsense mutation of theATRX gene causing mild mental retardation and epilepsy. Annals of Neurology, 2000, 47, 117-121.                                                                                                                                        | 5.3  | 72        |
| 130 | Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nature Genetics, 2000, 24, 368-371.                                                                                                                 | 21.4 | 476       |
| 131 | α-Thalassemia resulting from a negative chromosomal position effect. Blood, 2000, 96, 800-807.                                                                                                                                                                   | 1.4  | 50        |
| 132 | α-Thalassemia resulting from a negative chromosomal position effect. Blood, 2000, 96, 800-807.                                                                                                                                                                   | 1.4  | 2         |
| 133 | Comparison of the human and murine ATRX gene identifies highly conserved, functionally important domains. Mammalian Genome, 1998, 9, 400-403.                                                                                                                    | 2.2  | 64        |
| 134 | Do LCRs Open Chromatin Domains?. Cell, 1998, 95, 299-302.                                                                                                                                                                                                        | 28.9 | 94        |
| 135 | Human ARHGDIG, a GDP-Dissociation Inhibitor for Rho Proteins: Genomic Structure, Sequence, Expression Analysis, and Mapping to Chromosome 16p13.3. Genomics, 1998, 53, 104-109.                                                                                  | 2.9  | 14        |
| 136 | The relationship between chromosome structure and function at a human telomeric region. Nature Genetics, 1997, 15, 252-257.                                                                                                                                      | 21.4 | 143       |
| 137 | Mutations in transcriptional regulator ATRX establish the functional significance of a PHD-like domain. Nature Genetics, 1997, 17, 146-148.                                                                                                                      | 21.4 | 196       |
| 138 | The α-Thalassemia/Mental Retardation Syndromes. Medicine (United States), 1996, 75, 45-52.                                                                                                                                                                       | 1.0  | 24        |
| 139 | X-linked α-thalassemia/mental retardation (ATR-X) syndrome: A new kindred with severe genital<br>anomalies and mild hematologic expression. American Journal of Medical Genetics Part A, 1995, 55,<br>302-306.                                                   | 2.4  | 50        |
| 140 | Mutations in a putative global transcriptional regulator cause X-linked mental retardation with<br>α-thalassemia (ATR-X syndrome). Cell, 1995, 80, 837-845.                                                                                                      | 28.9 | 583       |
| 141 | Conservation of Position and Sequence of a Novel, Widely Expressed Gene Containing the Major<br>Human α-Globin Regulatory Element. Genomics, 1995, 29, 679-689.                                                                                                  | 2.9  | 56        |
| 142 | The IL-9 Receptor Gene (IL9R): Genomic Structure, Chromosomal Localization in the Pseudoautosomal<br>Region of the Long Arm of the Sex Chromosomes, and Identification of IL9R Pseudogenes at 9qter,<br>10pter, 16pter, and 18pter. Genomics, 1995, 29, 371-382. | 2.9  | 72        |
| 143 | Analysis of a 70 kb segment of DNA containing the human ζ and α-globin genes linked to their regulatory element (HS-40) in transgenic mice. Nucleic Acids Research, 1994, 22, 4139-4147.                                                                         | 14.5 | 48        |
| 144 | 5 α-Thalassaemia. Best Practice and Research: Clinical Haematology, 1993, 6, 117-150.                                                                                                                                                                            | 1.1  | 94        |

| #   | ARTICLE                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | An unusually large (CA)n repeat in the region of divergence between subtelomeric alleles of human chromosome 16p. Genomics, 1992, 13, 81-88.        | 2.9  | 17        |
| 146 | Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell, 1991, 64, 595-606.                             | 28.9 | 169       |
| 147 | A truncated human chromosome 16 associated with α thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature, 1990, 346, 868-871. | 27.8 | 300       |
| 148 | Structure and expression of the human Î,l globin gene. Nature, 1988, 331, 94-96.                                                                    | 27.8 | 53        |
| 149 | Clinical features and molecular analysis of acquired hemoglobin H disease. American Journal of<br>Medicine, 1983, 75, 181-191.                      | 1.5  | 49        |
| 150 | The Interaction of Alpha-Thalassemia and Homozygous Sickle-Cell Disease. New England Journal of Medicine, 1982, 306, 1441-1446.                     | 27.0 | 305       |
| 151 | Molecular and Cellular Basis of Hemoglobin Switching. , 0, , 86-100.                                                                                |      | 3         |
| 152 | α THALASSEMIA. , 0, , 239-240.                                                                                                                      |      | 6         |
| 153 | Unusual Types of α Thalassemia. , 0, , 296-320.                                                                                                     |      | 2         |
| 154 | Other Sickle Hemoglobinopathies. , 0, , 564-586.                                                                                                    |      | 4         |
| 155 | The Normal Structure and Regulation of Human Globin Gene Clusters. , 0, , 46-61.                                                                    |      | 8         |