Anna Garbelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11291222/publications.pdf Version: 2024-02-01

ANNA CADRELLI

#	Article	IF	CITATIONS
1	Targeting DDX3X Helicase Activity with BA103 Shows Promising Therapeutic Effects in Preclinical Glioblastoma Models. Cancers, 2021, 13, 5569.	3.7	6
2	Unique Domain for a Unique Target: Selective Inhibitors of Host Cell DDX3X to Fight Emerging Viruses. Journal of Medicinal Chemistry, 2020, 63, 9876-9887.	6.4	7
3	Novel Insights into the Biochemical Mechanism of CK1ε and its Functional Interplay with DDX3X. International Journal of Molecular Sciences, 2020, 21, 6449.	4.1	1
4	Novel alternative ribonucleotide excision repair pathways in human cells by DDX3X and specialized DNA polymerases. Nucleic Acids Research, 2020, 48, 11551-11565.	14.5	9
5	DDX3X inhibitors, an effective way to overcome HIV-1 resistance targeting host proteins. European Journal of Medicinal Chemistry, 2020, 200, 112319.	5.5	27
6	Exploring the Implication of DDX3X in DENV Infection: Discovery of the First-in-Class DDX3X Fluorescent Inhibitor. ACS Medicinal Chemistry Letters, 2020, 11, 956-962.	2.8	19
7	Synthesis and Antiviral Activity of Novel 1,3,4-Thiadiazole Inhibitors of DDX3X. Molecules, 2019, 24, 3988.	3.8	31
8	DDX3X Helicase Inhibitors as a New Strategy To Fight the West Nile Virus Infection. Journal of Medicinal Chemistry, 2019, 62, 2333-2347.	6.4	49
9	How to win the HIV-1 drug resistance hurdle race: running faster or jumping higher?. Biochemical Journal, 2017, 474, 1559-1577.	3.7	20
10	Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proceedings of the United States of America, 2016, 113, 5388-5393.	7.1	100
11	Homology Model-Based Virtual Screening for the Identification of Human Helicase DDX3 Inhibitors. Journal of Chemical Information and Modeling, 2015, 55, 2443-2454.	5.4	75
12	Targeting Cellular Cofactors in HIV Therapy. Topics in Medicinal Chemistry, 2014, , 183-222.	0.8	8
13	The <scp>A</scp> rabidopsis <scp>STRESS RESPONSE SUPPRESSOR DEAD</scp> â€box <scp>RNA</scp> helicases are nucleolar―and chromocenterâ€localized proteins that undergo stressâ€mediated relocalization and are involved in epigenetic gene silencing. Plant Journal, 2014, 79, 28-43.	5.7	62
14	Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: Towards the next generation HIV-1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2094-2098.	2.2	85
15	A Motif Unique to the Human Dead-Box Protein DDX3 Is Important for Nucleic Acid Binding, ATP Hydrolysis, RNA/DNA Unwinding and HIV-1 Replication. PLoS ONE, 2011, 6, e19810.	2.5	85
16	The PDZ-Ligand and Src-Homology Type 3 Domains of Epidemic Avian Influenza Virus NS1 Protein Modulate Human Src Kinase Activity during Viral Infection. PLoS ONE, 2011, 6, e27789.	2.5	16
17	Toward the Discovery of Novel Antiâ€HIV Drugs. Secondâ€Generation Inhibitors of the Cellular ATPase DDX3 with Improved Antiâ€HIV Activity: Synthesis, Structure–Activity Relationship Analysis, Cytotoxicity Studies, and Target Validation. ChemMedChem, 2011, 6, 1371-1389.	3.2	95
18	Pharmacophore Modeling and Molecular Docking Led to the Discovery of Inhibitors of Human Immunodeficiency Virus-1 Replication Targeting the Human Cellular Aspartic Acidâ ''Glutamic Acidâ ''Alanineâ ''Aspartic Acid Box Polypeptide 3. Journal of Medicinal Chemistry, 2008, 51, 6635-6638.	6.4	81