
Pernille Bronken Eidesen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11288493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Holocene chloroplast genetic variation of shrubs (<i>Alnus alnobetula</i> , <i>Betula nana</i> ,) Tj ETQq1 1 0.784 assembly and sedimentary ancient DNA analyses. Ecology and Evolution, 2021, 11, 2173-2193.	1314 rgBT 1.9	/Overlock 10 9
2	Can root-associated fungi mediate the impact of abiotic conditions on the growth of a High Arctic herb?. Soil Biology and Biochemistry, 2021, 159, 108284.	8.8	0
3	Female advantage? Investigating female frequency and establishment performance in high-Arctic <i>Silene acaulis</i> . Botany, 2019, 97, 245-261.	1.0	3
4	Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)?. Mycorrhiza, 2017, 27, 513-524.	2.8	21
5	Late Pleistocene origin of the entire circumarctic range of the arcticâ€alpine plant <i>Kalmia procumbens</i> . Molecular Ecology, 2017, 26, 5773-5783.	3.9	17
6	The regional species richness and genetic diversity of <scp>A</scp> rctic vegetation reflect both past glaciations and current climate. Global Ecology and Biogeography, 2016, 25, 430-442.	5.8	44
7	Ectomycorrhizal and saprotrophic fungi respond differently to longâ€ŧerm experimentally increased snow depth in the High Arctic. MicrobiologyOpen, 2016, 5, 856-869.	3.0	30
8	Alpine bistort (Bistorta vivipara) in edge habitat associates with fewer but distinct ectomycorrhizal fungal species: a comparative study of three contrasting soil environments in Svalbard. Mycorrhiza, 2016, 26, 809-818.	2.8	17
9	Past climateâ€driven range shifts and population genetic diversity in arctic plants. Journal of Biogeography, 2016, 43, 461-470.	3.0	48
10	Characterization of 14 Microsatellite Markers for Silene acaulis (Caryophyllaceae). Applications in Plant Sciences, 2015, 3, 1500036.	2.1	3
11	Temporal variation of <i>Bistorta vivipara</i> â€associated ectomycorrhizal fungal communities in the High Arctic. Molecular Ecology, 2015, 24, 6289-6302.	3.9	39
12	Comparative analyses of plastid and <scp>AFLP</scp> data suggest different colonization history and asymmetric hybridization between <i>Betula pubescens</i> and <i>B.Ânana</i> . Molecular Ecology, 2015, 24, 3993-4009.	3.9	31
13	Long-distance plant dispersal to North Atlantic islands: colonization routes and founder effect. AoB PLANTS, 2015, 7, .	2.3	60
14	Persistent history of the bird-dispersed arctic–alpine plant Vaccinium vitis-idaea L. (Ericaceae) in Japan. Journal of Plant Research, 2015, 128, 437-444.	2.4	18
15	Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity. New Phytologist, 2013, 200, 898-910.	7.3	122
16	Germinating seeds or bulbils in 87 of 113 tested Arctic species indicate potential for ex situ seed bank storage. Polar Biology, 2013, 36, 819-830.	1.2	36
17	Tetraploids do not form cushions: association of ploidy level, growth form and ecology in the High Arctic <i>Saxifraga oppositifolia</i> L. s. lat. (Saxifragaceae) in Svalbard. Polar Research, 2013, 32, 20071.	1.6	13
18	Microsatellite markers for <i>Bistorta vivipara</i> (Polygonaceae). American Journal of Botany, 2012, 99. e226-9.	1.7	5

#	Article	IF	CITATIONS
19	Frequency of local, regional, and longâ€distance dispersal of diploid and tetraploid <i>Saxifraga oppositifolia</i> (Saxifragaceae) to Arctic glacier forelands. American Journal of Botany, 2012, 99, 459-471.	1.7	15
20	Range shifts and global warming: ecological responses of <i>Empetrum nigrum</i> L. to experimental warming at its northern (high Arctic) and southern (Atlantic) geographical range margin. Environmental Research Letters, 2012, 7, 025501.	5.2	38
21	Genetic consequences of climate change for northern plants. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2042-2051.	2.6	162
22	Frequent Long-Distance Plant Colonization in the Changing Arctic. Science, 2007, 316, 1606-1609.	12.6	300
23	Repeatedly out of Beringia: Cassiope tetragona embraces the Arctic. Journal of Biogeography, 2007, 34, 1559-1574.	3.0	74
24	Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Molecular Ecology, 2006, 15, 1827-1840.	3.9	810