Andreas Gille

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/112882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPR41/FFAR3 and GPR43/FFAR2 as Cosensors for Short-Chain Fatty Acids in Enteroendocrine Cells vs FFAR3 in Enteric Neurons and FFAR2 in Enteric Leukocytes. Endocrinology, 2013, 154, 3552-3564.	2.8	436
2	Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nature Communications, 2017, 8, 15557.	12.8	321
3	GPR109A (PUMA-G/HM74A) mediates nicotinic acid–induced flushing. Journal of Clinical Investigation, 2005, 115, 3634-3640.	8.2	297
4	An Autocrine Lactate Loop Mediates Insulin-Dependent Inhibition of Lipolysis through GPR81. Cell Metabolism, 2010, 11, 311-319.	16.2	291
5	Nicotinic Acid: Pharmacological Effects and Mechanisms of Action. Annual Review of Pharmacology and Toxicology, 2008, 48, 79-106.	9.4	263
6	Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nature Medicine, 2015, 21, 173-177.	30.7	251
7	Sequence alignment visualization in HTML5 without Java. Bioinformatics, 2014, 30, 121-122.	4.1	233
8	Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. Journal of Clinical Investigation, 2011, 121, 1163-1173.	8.2	221
9	Nicotinic Acid-Induced Flushing Is Mediated by Activation of Epidermal Langerhans Cells. Molecular Pharmacology, 2006, 70, 1844-1849.	2.3	194
10	Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience, 2015, 290, 126-137.	2.3	192
11	Nicotinic acid– and monomethyl fumarate–induced flushing involves GPR109A expressed by keratinocytes and COX-2–dependent prostanoid formation in mice. Journal of Clinical Investigation, 2010, 120, 2910-2919.	8.2	173
12	Novel Formulation of a Reconstituted High-Density Lipoprotein (CSL112) Dramatically Enhances ABCA1-Dependent Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2202-2211.	2.4	106
13	Differential Inhibition of Adenylyl Cyclase Isoforms and Soluble Guanylyl Cyclase by Purine and Pyrimidine Nucleotides. Journal of Biological Chemistry, 2004, 279, 19955-19969.	3.4	91
14	CSL112 Enhances Biomarkers of Reverse Cholesterol Transport After Single and Multiple Infusions in Healthy Subjects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2106-2114.	2.4	91
15	Inhibitors of membranous adenylyl cyclases. Trends in Pharmacological Sciences, 2012, 33, 64-78.	8.7	90
16	Infusion of Reconstituted Highâ€Density Lipoprotein, CSL112, in Patients With Atherosclerosis: Safety and Pharmacokinetic Results From a Phase 2a Randomized Clinical Trial. Journal of the American Heart Association, 2015, 4, e002171.	3.7	89
17	Enhanced HDL Functionality in Small HDL Species Produced Upon Remodeling of HDL by Reconstituted HDL, CSL112. Circulation Research, 2016, 119, 751-763.	4.5	85
18	A multiple ascending dose study of CSL112, an infused formulation of ApoAâ€I. Journal of Clinical Pharmacology, 2014, 54, 301-310.	2.0	74

ANDREAS GILLE

#	Article	IF	CITATIONS
19	Structural Basis for the Inhibition of Mammalian Membrane Adenylyl Cyclase by 2 ′(3′)-O-(N-Methylanthraniloyl)-guanosine 5 ′-Triphosphate. Journal of Biological Chemistry, 2005, 280, 7253-7261.	3.4	66
20	Alignment-Annotator web server: rendering and annotating sequence alignments. Nucleic Acids Research, 2014, 42, W3-W6.	14.5	56
21	CSL112 (Apolipoprotein A-I [Human]) Enhances Cholesterol Efflux Similarly in Healthy Individuals and Stable Atherosclerotic Disease Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 953-963.	2.4	54
22	Broad Specificity of Mammalian Adenylyl Cyclase for Interaction with 2′,3′-Substituted Purine- and Pyrimidine Nucleotide Inhibitors. Molecular Pharmacology, 2006, 70, 878-886.	2.3	51
23	2′(3′)-O-(N-Methylanthraniloyl)-substituted GTP Analogs: A Novel Class of Potent Competitive Adenylyl Cyclase Inhibitors. Journal of Biological Chemistry, 2003, 278, 12672-12679.	3.4	45
24	Molecular Analysis of the Interaction of Anthrax Adenylyl Cyclase Toxin, Edema Factor, with 2′(3′)- <i>O</i> -(<i>N</i> -(methyl)anthraniloyl)-Substituted Purine and Pyrimidine Nucleotides. Molecular Pharmacology, 2009, 75, 693-703.	2.3	36
25	Characterization of Mouse Heart Adenylyl Cyclase. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 1156-1165.	2.5	35
26	Role of HCA2 (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin. , 2012, 136, 1-7.		35
27	Ca2+ signalling of kinins in cells expressing rat, mouse and human B1/B2-receptor. International Immunopharmacology, 2008, 8, 276-281.	3.8	34
28	Differential Inhibition of Various Adenylyl Cyclase Isoforms and Soluble Guanylyl Cyclase by 2′,3′- <i>O</i> (2,4,6-Trinitrophenyl)-Substituted Nucleoside 5′-Triphosphates. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 687-695.	2.5	22
29	Differential interactions of the catalytic subunits of adenylyl cyclase with forskolin analogs. Biochemical Pharmacology, 2009, 78, 62-69.	4.4	20
30	Co-expression of the β2-adrenoceptor and dopamine D1-receptor with Gsα proteins in Sf9 insect cells: limitations in comparison with fusion proteins. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1613, 101-114.	2.6	19
31	Low-affinity interactions of BODIPY-FL-GTP?S and BODIPY-FL-GppNHp with Gi- and Gs-proteins. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 368, 210-215.	3.0	17
32	Structure–activity relationships for the interactions of 2′- and 3′-(O)-(N-methyl)anthraniloyl-substituted purine and pyrimidine nucleotides with mammalian adenylyl cyclases. Biochemical Pharmacology, 2011, 82, 358-370.	4.4	17
33	Differential interactions of G-proteins and adenylyl cyclase with nucleoside 5′-triphosphates, nucleoside 5′-[γ-thio]triphosphates and nucleoside 5′-[β,γ-imido]triphosphates. Biochemical Pharmacology 2005, 71, 89-97.	/,4.4	16
34	Reconstituted highâ€density lipoprotein can elevate plasma alanine aminotransferase by transient depletion of hepatic cholesterol: role of the phospholipid component. Journal of Applied Toxicology, 2016, 36, 1038-1047.	2.8	15
35	Bipolar clamping improves the sensitivity of mutation detection by temperature gradient gel electrophoresis. Electrophoresis, 1998, 19, 1347-1350.	2.4	13
36	Distinct Interactions of GTP, UTP, and CTP with GsProteins. Journal of Biological Chemistry, 2002, 277, 34434-34442.	3.4	13

ANDREAS GILLE

#	Article	IF	CITATIONS
37	Pharmacokinetics and Safety of CSL112 (Apolipoprotein Aâ€I [Human]) in Adults With Moderate Renal Impairment and Normal Renal Function. Clinical Pharmacology in Drug Development, 2019, 8, 628-636.	1.6	13
38	GDP Affinity and Order State of the Catalytic Site Are Critical for Function of Xanthine Nucleotide-selective GαsProteins. Journal of Biological Chemistry, 2003, 278, 7822-7828.	3.4	11
39	Structural Basis for the High-Affinity Inhibition of Mammalian Membranous Adenylyl Cyclase by 2′,3′- <i>O</i> -(<i>N</i> -Methylanthraniloyl)-Inosine 5′-Triphosphate. Molecular Pharmacology, 2011, 80, 87-96.	2.3	11
40	Moderate Renal Impairment Does Not Impact the Ability of CSL112 (Apolipoprotein Aâ€I [Human]) to Enhance Cholesterol Efflux Capacity. Journal of Clinical Pharmacology, 2019, 59, 427-436.	2.0	10
41	Xanthine nucleotide-specific G-protein a-subunits: a novel approach for the analysis of G-protein-mediated signal transduction. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 141-150.	3.0	9
42	Pharmacometric analyses to characterize the effect of CSL112 on apolipoprotein Aâ€I and cholesterol efflux capacity in acute myocardial infarction patients. British Journal of Clinical Pharmacology, 2021, 87, 2558-2571.	2.4	9
43	MANT-substituted guanine nucleotides: A novel class of potent adenylyl cyclase inhibitors. Life Sciences, 2003, 74, 271-279.	4.3	5
44	TGGE-STAR: Primer Design for Melting Analysis Using PCR Gradient Gel Electrophoresis. BioTechniques, 2002, 32, 264-268.	1.8	4
45	CSL112 ENHANCES THE ABILITY OF SERUM TO EFFLUX CHOLESTEROL IN PATIENTS WITH MODERATE RENAL IMPAIRMENT. Journal of the American College of Cardiology, 2017, 69, 54.	2.8	0
46	2â€~(3â€~)-O-(N-methylanthraniloyl)-substituted GTP analogs: a novel class of potent competitive adenylyl cyclase inhibitors Journal of Biological Chemistry, 2003, 278, 31456.	3.4	0