Leonardo Pantoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1128748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The clinical profile of cerebral small vessel disease: Toward an evidenceâ€based identification of cognitive markers. Alzheimer's and Dementia, 2023, 19, 244-260.	0.4	7
2	The Clock Drawing Test as a predictor of cognitive decline in non-demented stroke patients. Journal of Neurology, 2022, 269, 342-349.	1.8	6
3	Balance and visual reliance in post-COVID syndrome patients assessed with a robotic system: a multi-sensory integration deficit. Neurological Sciences, 2022, 43, 85-88.	0.9	8
4	Translations and cultural adaptations of the Montreal Cognitive Assessment: a systematic and qualitative review. Neurological Sciences, 2022, 43, 113-124.	0.9	9
5	Rapidly progressive dementia and intractable diarrhea: a teaching case report and a systematic review of cognitive impairment in Whipple's disease. Neurological Sciences, 2022, 43, 907-926.	0.9	7
6	Predictivity of the clock drawing test in the acute phase of cerebrovascular diseases on cognitive decline at a 6-month neuropsychological evaluation. Neurological Sciences, 2022, 43, 2073-2076.	0.9	2
7	Cognitive aspects of MELAS and CARASAL. Cerebral Circulation - Cognition and Behavior, 2022, 3, 100139.	0.4	0
8	A nationwide survey of Italian Centers for Cognitive Disorders and Dementia on the provision of care for international migrants. European Journal of Neurology, 2022, 29, 1892-1902.	1.7	5
9	Prediction of post-stroke cognitive impairment by Montreal Cognitive Assessment (MoCA) performances in acute stroke: comparison of three normative datasets. Aging Clinical and Experimental Research, 2022, 34, 1855-1863.	1.4	6
10	Recurrent Ischemic Stroke and Bleeding in Patients With Atrial Fibrillation Who Suffered an Acute Stroke While on Treatment With Nonvitamin K Antagonist Oral Anticoagulants: The RENO-EXTEND Study. Stroke, 2022, 53, 2620-2627.	1.0	28
11	Outcome of a Real-World Cohort of Patients Subjected to Endovascular Treatment for Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 2022, 31, 106511.	0.7	1
12	Incipient chronic traumatic encephalopathy in active American football players: neuropsychological assessment and brain perfusion measures. Neurological Sciences, 2022, 43, 5383-5390.	0.9	2
13	The issue of dementia in migrants and ethnic minorities: the perspective of National Dementia Plans. Aging Clinical and Experimental Research, 2021, 33, 2703-2708.	1.4	6
14	Epileptiform Activity During Transient Focal Neurologic Episodes in Cerebral Amyloid Angiopathy. Neurology: Clinical Practice, 2021, 11, e43-e45.	0.8	2
15	Cognitive evaluation in cerebral small vessel disease: towards an evidence-based identification of the reference standards. Part 1. A systematic review and qualitative data synthesis. Journal of Neurology, 2021, 268, 4563-4572.	1.8	14
16	What can longitudinal observational studies of physical activity teach us about prevention of dementia?. Neurology, 2021, 96, 10.1212/WNL.000000000011376.	1.5	1
17	Longitudinal changes in MoCA performances in patients with mild cognitive impairment and small vessel disease. Results from the VMCI-Tuscany Study. Cerebral Circulation - Cognition and Behavior, 2021, 2, 100008.	0.4	1
18	The impact of lockdown during SARS-CoV-2 outbreak on behavioral and psychological symptoms of dementia. Neurological Sciences, 2021, 42, 825-833.	0.9	25

#	Article	IF	CITATIONS
19	Association of Bone Mineral Density to Cerebral Small Vessel Disease Burden. Neurology, 2021, 96, e1290-e1300.	1.5	13
20	Comparison of Oxford Cognitive Screen and Montreal Cognitive Assessment feasibility in the stroke unit setting. A pilot study. Cerebral Circulation - Cognition and Behavior, 2021, 2, 100021.	0.4	2
21	Cerebrovascular disease in patients with cognitive impairment: A white paper from the ESO dementia committee – A practical point of view with suggestions for the management of cerebrovascular diseases in memory clinics. European Stroke Journal, 2021, 6, 111-119.	2.7	9
22	Cognitive impairment in patients with cerebrovascular disease: A white paper from the links between stroke ESO Dementia Committee. European Stroke Journal, 2021, 6, 5-17.	2.7	37
23	Risk Factors for Intracerebral Hemorrhage in Patients With Atrial Fibrillation on Non–Vitamin K Antagonist Oral Anticoagulants for Stroke Prevention. Stroke, 2021, 52, 1450-1454.	1.0	7
24	Cognitive and behavioral manifestations in SARS-CoV-2 infection: not specific or distinctive features?. Neurological Sciences, 2021, 42, 2273-2281.	0.9	14
25	Efficacy and Safety of the Association of Nimodipine and Choline Alphoscerate in the Treatment of Cognitive Impairment in Patients with Cerebral Small Vessel Disease. The CONIVaD Trial. Drugs and Aging, 2021, 38, 481-491.	1.3	6
26	ESO Guideline on covert cerebral small vessel disease. European Stroke Journal, 2021, 6, CXI-CLXII.	2.7	68
27	Location of infarcts and post-stroke cognitive impairment. Lancet Neurology, The, 2021, 20, 413-414.	4.9	7
28	ESO Guideline on covert cerebral small vessel disease. European Stroke Journal, 2021, 6, IV-IV.	2.7	14
29	Detection of subclinical atrial fibrillation after cryptogenic stroke using implantable cardiac monitors. European Journal of Internal Medicine, 2021, 92, 86-93.	1.0	15
30	CADASIL from Bench to Bedside: Disease Models and Novel Therapeutic Approaches. Molecular Neurobiology, 2021, 58, 2558-2573.	1.9	25
31	Stroke Care during the COVID-19 Pandemic: International Expert Panel Review. Cerebrovascular Diseases, 2021, 50, 245-261.	0.8	32
32	Cognitive disorders in migrants: retrospective analysis in a Center for Cognitive Disorders and Dementia in Milan. Aging Clinical and Experimental Research, 2020, 32, 535-538.	1.4	7
33	Association of nimodipine and choline alphoscerate in the treatment of cognitive impairment in patients with cerebral small vessel disease: study protocol for a randomized placebo-controlled trial—the CONIVaD trial. Aging Clinical and Experimental Research, 2020, 32, 449-457.	1.4	15
34	Ischemic stroke caused by giant cell arteritis associated with pulmonary adenocarcinoma. Journal of Clinical Neuroscience, 2020, 72, 485-486.	0.8	1
35	Brain atrophy in cerebral small vessel diseases: Extent, consequences, technical limitations and perspectives: The HARNESS initiative. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 231-245.	2.4	49
36	Mild Cognitive Impairment in the Migrant Population Living in Europe: An Epidemiological Estimation of the Phenomenon. Journal of Alzheimer's Disease, 2020, 73, 715-721.	1.2	6

#	Article	IF	CITATIONS
37	Respiratory dysfunction as first presentation of myasthenia gravis misdiagnosed as COVID-19. Neurological Sciences, 2020, 41, 3419-3421.	0.9	7
38	Neuropsychological screening in the acute phase of cerebrovascular diseases. Acta Neurologica Scandinavica, 2020, 142, 377-384.	1.0	9
39	Dementia among migrants and ethnic minorities in Italy: rationale and study protocol of the ImmiDem project. BMJ Open, 2020, 10, e032765.	0.8	5
40	Stroke care in Italy at the time of the COVID-19 pandemic: a lesson to learn. Journal of Neurology, 2020, 268, 2307-2313.	1.8	10
41	Call to Action: SARS-CoV-2 and CerebrovAscular DisordErs (CASCADE). Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104938.	0.7	24
42	Understanding the Pathophysiology of Cerebral Amyloid Angiopathy. International Journal of Molecular Sciences, 2020, 21, 3435.	1.8	39
43	Diagnosing herpes simplex-1 encephalitis at the time of COVID-19 pandemic. Neurological Sciences, 2020, 41, 1361-1364.	0.9	15
44	Stroke care during the COVIDâ€19 pandemic: experience from three large European countries. European Journal of Neurology, 2020, 27, 1794-1800.	1.7	128
45	Impact of the SARS oVâ€2 pandemic on stroke care: a warning message. European Journal of Neurology, 2020, 27, 1781-1782.	1.7	6
46	On being a neurologist in Italy at the time of the COVID-19 outbreak. Neurology, 2020, 94, 905-906.	1.5	71
47	Discovering the Italian phenotype of cerebral amyloid angiopathy (CAA): the SENECA project. Neurological Sciences, 2020, 41, 2193-2200.	0.9	3
48	Treatment-related transient splenial lesion of the Corpus Callosum in patients with neuropsychiatric disorders: a literature overview with a case report. Expert Opinion on Drug Safety, 2020, 19, 315-325.	1.0	1
49	The role of the neuropsychologist in memory clinics. Neurological Sciences, 2020, 41, 1483-1488.	0.9	6
50	DTI-derived indexes of brain WM correlate with cognitive performance in vascular MCI and small-vessel disease. A TBSS study. Brain Imaging and Behavior, 2019, 13, 594-602.	1.1	16
51	Fractal dimension of cerebral white matter: A consistent feature for prediction of the cognitive performance in patients with small vessel disease and mild cognitive impairment. NeuroImage: Clinical, 2019, 24, 101990.	1.4	30
52	A semi-quantitative sport-specific assessment of recurrent traumatic brain injury: the TraQ questionnaire and its application in American football. Neurological Sciences, 2019, 40, 1909-1915.	0.9	16
53	Estimating dementia cases amongst migrants living in Europe. European Journal of Neurology, 2019, 26, 1191-1199.	1.7	27
54	Binaural stimulation in migraine: preliminary results from a 3-month evening treatment. Neurological Sciences, 2019, 40, 197-198.	0.9	4

#	Article	IF	CITATIONS
55	Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 191-204.	1.2	65
56	Relevance of brain lesion location for cognition in vascular mild cognitive impairment. NeuroImage: Clinical, 2019, 22, 101789.	1.4	12
57	Cerebral small vessel disease and systemic arteriopathy in intracranial arterial dolichoectasia patients. Acta Neurologica Scandinavica, 2019, 139, 150-157.	1.0	5
58	Qualitative Evaluation of the Immediate Copy of the Rey–Osterrieth Complex Figure: Comparison Between Vascular and Degenerative MCI Patients. Archives of Clinical Neuropsychology, 2019, 34, 14-23.	0.3	22
59	Transient global amnesia: an intriguing yet benign disturbance. Arquivos De Neuro-Psiquiatria, 2019, 77, 1-2.	0.3	3
60	Notch3 protein expression in skin fibroblasts from CADASIL patients. Journal of the Neurological Sciences, 2018, 390, 121-128.	0.3	1
61	Application of the DSM-5 Criteria for Major Neurocognitive Disorder to Vascular MCI Patients. Dementia and Geriatric Cognitive Disorders Extra, 2018, 8, 104-116.	0.6	13
62	Vascular cognitive impairment. Nature Reviews Disease Primers, 2018, 4, 18003.	18.1	358
63	Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimer's and Dementia, 2018, 14, 280-292.	0.4	246
64	Mixed-location cerebral hemorrhage/microbleeds. Neurology, 2018, 90, e119-e126.	1.5	128
65	P2â€341: THE COMBINED EFFECT OF COGNITIVE IMPAIRMENT AND PHYSICAL FRAILTY ON DEMENTIA INCIDENC SYSTEMATIC REVIEW AND METAâ€ANALYSIS. Alzheimer's and Dementia, 2018, 14, P816.	E: _{0.4}	0
66	Functional magnetic resonance imaging with encoding task in patients with mild cognitive impairment and different severity of leukoaraiosis. Psychiatry Research - Neuroimaging, 2018, 282, 126-131.	0.9	5
67	May migraine attack response to triptans be a predictor of the efficacy of Onabotulinum toxin-A prophylaxis?. Neurological Sciences, 2018, 39, 153-154.	0.9	8
68	Estimating dementia cases in the immigrant population living in Italy. Neurological Sciences, 2018, 39, 1775-1778.	0.9	6
69	Personality traits in migraineurs: a case-control study by personality inventory for DSM-5 (PID-5). Neurological Sciences, 2018, 39, 129-130.	0.9	5
70	Location, number and factors associated with cerebral microbleeds in an Italian-British cohort of CADASIL patients. PLoS ONE, 2018, 13, e0190878.	1.1	33
71	The brain effect of the migraine attack: an ASL MRI study of the cerebral perfusion during a migraine attack. Neurological Sciences, 2018, 39, 73-74.	0.9	8
72	Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Medicine, 2017, 15, 41.	2.3	212

#	Article	IF	CITATIONS
73	Visuospatial Functioning in Cerebral Amyloid Angiopathy: A Pilot Study. Journal of Alzheimer's Disease, 2017, 56, 1223-1227.	1.2	12
74	Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease. Neurology, 2017, 88, 2162-2168.	1.5	112
75	Have Stroke Neurologists Entered the Arena of Stroke-Related Cognitive Dysfunctions?. Stroke, 2017, 48, 1441-1442.	1.0	20
76	Pregnancy in CADASIL. Acta Neurologica Scandinavica, 2017, 136, 668-671.	1.0	6
77	The Vascular Impairment of Cognition Classification Consensus Study. Alzheimer's and Dementia, 2017, 13, 624-633.	0.4	143
78	Resting state fMRI regional homogeneity correlates with cognition measures in subcortical vascular cognitive impairment. Journal of the Neurological Sciences, 2017, 373, 1-6.	0.3	36
79	Effect of Attention Training in Mild Cognitive Impairment Patients with Subcortical Vascular Changes: The RehAtt Study. Journal of Alzheimer's Disease, 2017, 60, 615-624.	1.2	21
80	Leukoaraiosis as an outcome predictor in the acute and subacute phases of stroke. Expert Review of Neurotherapeutics, 2017, 17, 963-975.	1.4	21
81	Total small vessel disease burden and brain network efficiency in cerebral amyloid angiopathy. Journal of the Neurological Sciences, 2017, 382, 10-12.	0.3	16
82	Antipsychotics and Cerebrovascular Accidents: Taking or Not theÂRisk?. Journal of the American Medical Directors Association, 2017, 18, 651-652.	1.2	1
83	Heterozygous mutations of <i><scp>HTRA</scp>1</i> gene in patients with familial cerebral small vessel disease. CNS Neuroscience and Therapeutics, 2017, 23, 759-765.	1.9	46
84	Thrombolysis in dementia patients with acute stroke: is it justified?. Neurological Sciences, 2017, 38, 27-31.	0.9	23
85	Diffusion Tensor Imaging to Map Brain Microstructural Changes in CADASIL. Journal of Neuroimaging, 2017, 27, 85-91.	1.0	22
86	Circulating Biomarkers in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy Patients. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 823-833.	0.7	12
87	White matter microstructural damage and depressive symptoms in patients with mild cognitive impairment and cerebral small vessel disease: the VMClâ€īuscany Study. International Journal of Geriatric Psychiatry, 2016, 31, 611-618.	1.3	15
88	The rehabilitation of attention in patients with mild cognitive impairment and brain subcortical vascular changes using the Attention Process Training-II. The RehAtt Study: rationale, design and methodology. Neurological Sciences, 2016, 37, 1653-1662.	0.9	11
89	Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1319-1337.	2.4	80
90	White Matter Microstructural Damage on Diffusion Tensor Imaging in Cerebral Small Vessel Disease. Stroke, 2016, 47, 1679-1684.	1.0	80

#	Article	IF	CITATIONS
91	METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: An initiative of the Joint Programme for Neurodegenerative Disease Research. Alzheimer's and Dementia, 2016, 12, 1235-1249.	0.4	82
92	Leukoaraiosis, Cerebral Hemorrhage, and Outcome After Intravenous Thrombolysis for Acute Ischemic Stroke. Stroke, 2016, 47, 2364-2372.	1.0	75
93	Cerebral microbleeds in patients with mild cognitive impairment and small vessel disease: The Vascular Mild Cognitive Impairment (VMCI)-Tuscany study. Journal of the Neurological Sciences, 2016, 368, 195-202.	0.3	27
94	The Relevance of Assessing Cognitive Performances in Patients With Cerebrovascular Diseases. Journal of the American Medical Directors Association, 2016, 17, 458-459.	1.2	1
95	Prediction of Impaired Performance in Trail Making Test in MCI Patients With Small Vessel Disease Using DTI Data. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1026-1033.	3.9	27
96	Operationalizing mild cognitive impairment criteria in small vessel disease: the VMCI-Tuscany Study. , 2016, 12, 407-418.		34
97	Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: A review. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 72-94.	2.4	197
98	Impact of cerebral white matter changes on functionality in older adults: An overview of the LADIS Study results and future directions. Geriatrics and Gerontology International, 2015, 15, 10-16.	0.7	56
99	Clinical, familial, and neuroimaging features of CADASIL-like patients. Acta Neurologica Scandinavica, 2015, 131, 30-36.	1.0	13
100	ls type 2 diabetes related to leukoaraiosis? an updated review. Acta Neurologica Scandinavica, 2015, 132, 147-155.	1.0	48
101	Atrial Fibrillation and Cognition. Stroke, 2015, 46, 3316-3321.	1.0	56
102	Moyamoya in a patient with Sneddon's syndrome. Clinical Neurology and Neurosurgery, 2015, 129, 34-36.	0.6	10
103	White Matter Microstructural Damage in Small Vessel Disease Is Associated With Montreal Cognitive Assessment But Not With Mini Mental State Examination Performances. Stroke, 2015, 46, 262-264.	1.0	47
104	Physical activity in the elderly is associated with improved executive function and processing speed: the LADIS Study. International Journal of Geriatric Psychiatry, 2015, 30, 744-750.	1.3	51
105	The burden of microstructural damage modulates cortical activation in elderly subjects with MCI and leukoâ€araiosis. A DTI and fMRI study. Human Brain Mapping, 2014, 35, 819-830.	1.9	48
106	Thrombolysis in Acute Stroke Patients with Cerebral Small Vessel Disease. Cerebrovascular Diseases, 2014, 37, 5-13.	0.8	84
107	Use of Montreal Cognitive Assessment in Patients With Stroke. Stroke, 2014, 45, 3135-3140.	1.0	107
108	Effects of Sapropterin on Endothelium-Dependent Vasodilation in Patients With CADASIL. Stroke, 2014, 45, 2959-2966.	1.0	16

#	Article	IF	CITATIONS
109	Neurological abnormalities predict disability: the LADIS (Leukoaraiosis And DISability) study. Journal of Neurology, 2014, 261, 1160-1169.	1.8	16
110	Influence of vascular risk factors and neuropsychological profile on functional performances in CADASIL: results from the MIcrovascular LEukoencephalopathy Study (MILES). European Journal of Neurology, 2014, 21, 65-71.	1.7	21
111	Development and Psychometric Properties of a Neuropsychological Battery for Mild Cognitive Impairment with Small Vessel Disease: The VMCI-Tuscany Study. Journal of Alzheimer's Disease, 2014, 43, 1313-1323.	1.2	29
112	The Florence VAS-COG Clinic: A Model for the Care of Patients with Cognitive and Behavioral Disturbances Consequent to Cerebrovascular Diseases. Journal of Alzheimer's Disease, 2014, 42, S453-S461.	1.2	10
113	Sporadic small vessel disease: pathogenic aspects. , 2014, , 52-63.		8
114	Deterioration of Gait and Balance over Time: The Effects of Age-Related White Matter Change - The LADIS Study. Cerebrovascular Diseases, 2013, 35, 544-553.	0.8	65
115	Predictive value of MoCA in the acute phase of stroke on the diagnosis of mid-term cognitive impairment. Journal of Neurology, 2013, 260, 2220-2227.	1.8	77
116	Factors predicting the Montreal cognitive assessment (MoCA) applicability and performances in a stroke unit. Journal of Neurology, 2013, 260, 1518-1526.	1.8	46
117	Cerebral white matter changes are associated with abnormalities on neurological examination in non-disabled elderly: the LADIS study. Journal of Neurology, 2013, 260, 1014-1021.	1.8	34
118	Cerebral hemorrhages in CADASIL: Report of four cases and a brief review. Journal of the Neurological Sciences, 2013, 330, 45-51.	0.3	43
119	Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurology, The, 2013, 12, 822-838.	4.9	3,919
120	Diffusion changes predict cognitive and functional outcome: The <scp>LADIS</scp> study. Annals of Neurology, 2013, 73, 576-583.	2.8	66
121	Facial Affect Recognition in CADASIL Patients. Archives of Clinical Neuropsychology, 2013, 28, 65-71.	0.3	5
122	Impaired vasoreactivity in mildly disabled CADASIL patients. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 268-274.	0.9	18
123	White Matter Lesion Progression in LADIS. Stroke, 2012, 43, 2643-2647.	1.0	88
124	Physical Activity Prevents Progression for Cognitive Impairment and Vascular Dementia. Stroke, 2012, 43, 3331-3335.	1.0	98
125	The Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL) Scale. Stroke, 2012, 43, 2871-2876.	1.0	68
126	The VAS-COG clinic: an out-patient service for patients with cognitive and behavioral consequences of cerebrovascular diseases. Neurological Sciences, 2012, 33, 1277-1283.	0.9	13

#	Article	IF	CITATIONS
127	Risk and Determinants of Dementia in Patients with Mild Cognitive Impairment and Brain Subcortical Vascular Changes: A Study of Clinical, Neuroimaging, and Biological Markers—The VMCI-Tuscany Study: Rationale, Design, and Methodology. International Journal of Alzheimer's Disease, 2012, 2012, 1-7.	1.1	26
128	Brain atrophy accelerates cognitive decline in cerebral small vessel disease. Neurology, 2012, 78, 1785-1792.	1.5	125
129	Post-Stroke Dementia and Cognitive Impairment. Frontiers of Neurology and Neuroscience, 2012, 30, 65-69.	3.0	55
130	Acetazolamide for the prophylaxis of migraine in CADASIL: a preliminary experience. Journal of Headache and Pain, 2012, 13, 299-302.	2.5	26
131	Corpus callosum atrophy as a predictor of age-related cognitive and motor impairment: A 3-year follow-up of the LADIS study cohort. Journal of the Neurological Sciences, 2011, 307, 100-105.	0.3	57
132	2001–2011: A Decade of the LADIS (Leukoaraiosis And DISability) Study: What Have We Learned about White Matter Changes and Small-Vessel Disease?. Cerebrovascular Diseases, 2011, 32, 577-588.	0.8	258
133	Advances in Vascular Cognitive Impairment 2010. Stroke, 2011, 42, 291-293.	1.0	24
134	The use of CT in dementia. International Psychogeriatrics, 2011, 23, S6-S12.	0.6	31
135	Self-Perceived Memory Complaints Predict Progression to Alzheimer Disease. The LADIS Study. Journal of Alzheimer's Disease, 2011, 27, 491-498.	1.2	21
136	Incident lacunes influence cognitive decline. Neurology, 2011, 76, 1872-1878.	1.5	183
137	Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurology, The, 2010, 9, 689-701.	4.9	2,586
138	Diffusion-Weighted Imaging and Cognition in the Leukoariosis and Disability in the Elderly Study. Stroke, 2010, 41, e402-8.	1.0	82
139	Comparison of clinical, familial, and MRI features of CADASIL and <i>NOTCH3</i> -negative patients. Neurology, 2010, 74, 57-63.	1.5	83
140	Bone Marrow-Derived Progenitor Cells in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2010, 41, 218-223.	1.0	28
141	Relationship between baseline white-matter changes and development of late-life depressive symptoms: 3-year results from the LADIS study. Psychological Medicine, 2010, 40, 603-610.	2.7	119
142	White matter changes and diabetes predict cognitive decline in the elderly. Neurology, 2010, 75, 160-167.	1.5	171
143	Location of lacunar infarcts correlates with cognition in a sample of non-disabled subjects with age-related white-matter changes: the LADIS study. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 478-483.	0.9	102
144	Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ: British Medical Journal, 2009, 339, b2477-b2477.	2.4	348

#	Article	IF	CITATIONS
145	Deep frontal and periventricular age related white matter changes but not basal ganglia and infratentorial hyperintensities are associated with falls: cross sectional results from the LADIS study. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 608-613.	0.9	127
146	Cognitive Decline and Dementia Related to Cerebrovascular Diseases: Some Evidence and Concepts. Cerebrovascular Diseases, 2009, 27, 191-196.	0.8	74
147	MRI-Defined Subcortical Ischemic Vascular Disease: Baseline Clinical and Neuropsychological Findings. Cerebrovascular Diseases, 2009, 27, 336-344.	0.8	78
148	Longitudinal Cognitive Decline in Subcortical Ischemic Vascular Disease – The LADIS Study. Cerebrovascular Diseases, 2009, 27, 384-391.	0.8	167
149	Psychiatric disturbances in CADASIL: a brief review. Acta Neurologica Scandinavica, 2008, 118, 291-295.	1.0	51
150	Urinary Complaints in Nondisabled Elderly People with Ageâ€Related White Matter Changes: The Leukoaraiosis And DISability (LADIS) Study. Journal of the American Geriatrics Society, 2008, 56, 1638-1643.	1.3	81
151	A pathogenic mutation on exon 21 of the NOTCH3 gene causing CADASIL in an octogenarian paucisymptomatic patient. Journal of the Neurological Sciences, 2008, 267, 170-173.	0.3	32
152	Self-perceived memory impairment and cognitive performance in an elderly independent population with age-related white matter changes. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 869-873.	0.9	42
153	Association of gait and balance disorders with age-related white matter changes. Neurology, 2008, 70, 935-942.	1.5	374
154	Progression of White Matter Hyperintensities and Incidence of New Lacunes Over a 3-Year Period. Stroke, 2008, 39, 1414-1420.	1.0	348
155	Leukoaraiosis: From an Ancient Term to an Actual Marker of Poor Prognosis. Stroke, 2008, 39, 1401-1403.	1.0	61
156	On the Etiology of Incident Brain Lacunes. Stroke, 2008, 39, 3083-3085.	1.0	76
157	Risk of Rapid Global Functional Decline in Elderly Patients With Severe Cerebral Age-Related White Matter Changes. Archives of Internal Medicine, 2007, 167, 81.	4.3	187
158	Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among non-disabled elderly. The LADIS study. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1325-1330.	0.9	136
159	The relation between white-matter lesions and cognition. Current Opinion in Neurology, 2007, 20, 390-397.	1.8	131
160	Clinical significance of corpus callosum atrophy in a mixed elderly population. Neurobiology of Aging, 2007, 28, 955-963.	1.5	67
161	White matter changes and late-life depressive symptoms. British Journal of Psychiatry, 2007, 191, 212-217.	1.7	141
162	The effect of white matter lesions on cognition in the elderly—small but detectable. Nature Clinical Practice Neurology, 2007, 3, 620-627.	2.7	104

#	Article	IF	CITATIONS
163	White Matter Hyperintensities Rather Than Lacunar Infarcts Are Associated With Depressive Symptoms in Older People: The LADIS Study. American Journal of Geriatric Psychiatry, 2006, 14, 834-841.	0.6	141
164	Leukoaraiosis Predicts Hidden Global Functioning Impairment in Nondisabled Older People: The LADIS (Leukoaraiosis and Disability in the Elderly) Study. Journal of the American Geriatrics Society, 2006, 54, 1095-1101.	1.3	83
165	Relationship between periventricular and deep white matter lesions and depressive symptoms in older people. The LADIS Study. International Journal of Geriatric Psychiatry, 2006, 21, 983-989.	1.3	94
166	Development of a Neuropsychological Battery for the Leukoaraiosis and Disability in the Elderly Study (LADIS): Experience and Baseline Data. Neuroepidemiology, 2006, 27, 101-116.	1.1	67
167	Corpus callosum atrophy is associated with mental slowing and executive deficits in subjects with age-related white matter hyperintensities: the LADIS Study. Journal of Neurology, Neurosurgery and Psychiatry, 2006, 78, 491-496.	0.9	90
168	Clinical features, risk factors, and prognosis in transient global amnesia: a follow-up study. European Journal of Neurology, 2005, 12, 350-356.	1.7	109
169	Postpartum psychiatric disturbances as an unrecognized onset of CADASIL. Acta Psychiatrica Scandinavica, 2005, 112, 241-241.	2.2	14
170	White matter hyperintensities and depression—preliminary results from the LADIS study. International Journal of Geriatric Psychiatry, 2005, 20, 674-679.	1.3	56
171	Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 1497-1500.	0.9	96
172	Efficacy and Safety of Nimodipine in Subcortical Vascular Dementia. Stroke, 2005, 36, 619-624.	1.0	100
173	Small Vessel Disease and General Cognitive Function in Nondisabled Elderly. Stroke, 2005, 36, 2116-2120.	1.0	311
174	Impact of Age-Related Cerebral White Matter Changes on the Transition to Disability – The LADIS Study: Rationale, Design and Methodology. Neuroepidemiology, 2005, 24, 51-62.	1.1	387
175	White matter lesion progression. Neurology, 2004, 63, 139-144.	1.5	163
176	Treatment of vascular dementia: evidence from trials with non-cholinergic drugs. Journal of the Neurological Sciences, 2004, 226, 67-70.	0.3	29
177	Vascular cognitive impairment. Lancet Neurology, The, 2003, 2, 89-98.	4.9	1,130
178	Visual Rating Scales for Age-Related White Matter Changes (Leukoaraiosis). Stroke, 2002, 33, 2827-2833.	1.0	101
179	A New Rating Scale for Age-Related White Matter Changes Applicable to MRI and CT. Stroke, 2001, 32, 1318-1322.	1.0	1,506
180	Transient global amnesia: a review emphasizing pathogenic aspects. Acta Neurologica Scandinavica, 2000, 102, 275-283.	1.0	101

#	Article	IF	CITATIONS
181	Limitations of Clincal Criteria for the Diagnosis of Vascular Dementia in Clinical Trials: Is a Focus on Subcortical Vascular Dementia a Solution?. Annals of the New York Academy of Sciences, 2000, 903, 262-272.	1.8	100
182	Efficacy and safety of nimodipine in subcortical vascular dementia: a subgroup analysis of the Scandinavian Multi-Infarct Dementia Trial. Journal of the Neurological Sciences, 2000, 175, 124-134.	0.3	89
183	The Scandinavian Multi-Infarct Dementia Trial: a double-blind, placebo-controlled trial on nimodipine in multi-infarct dementia. Journal of the Neurological Sciences, 2000, 175, 116-123.	0.3	61
184	Research criteria for subcortical vascular dementia in clinical trials. , 2000, 59, 23-30.		414
185	Emotional Arousal and Phobia in Transient Global Amnesia. Archives of Neurology, 1997, 54, 866-873.	4.9	85
186	Pathogenesis of Leukoaraiosis. Stroke, 1997, 28, 652-659.	1.0	1,050
187	A Preliminary Open Trial with Nimodipine in Patients with Cognitive Impairment and Leukoaraiosis. Clinical Neuropharmacology, 1996, 19, 497-506.	0.2	38
188	Cerebral White Matter Is Highly Vulnerable to Ischemia. Stroke, 1996, 27, 1641-1647.	1.0	535
189	The Significance of Cerebral White Matter Abnormalities 100 Years After Binswanger's Report. Stroke, 1995, 26, 1293-1301.	1.0	427
190	Pathology of cerebral small vessel disease. , 0, , 4-15.		9