Yingtian Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1128661/publications.pdf

Version: 2024-02-01

567281 713466 25 1,628 15 21 h-index citations g-index papers 25 25 25 1499 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Soft Robotic Balloon Endoscope for Airway Procedures. Soft Robotics, 2022, 9, 1014-1029.	8.0	4
2	In Vivo Molding of Airway Stents. Advanced Functional Materials, 2021, 31, 2010525.	14.9	6
3	A Dual-Mode Actuator for Soft Robotic Hand. IEEE Robotics and Automation Letters, 2021, 6, 1144-1151.	5.1	17
4	On the Mechanical Power Output Comparisons of Cone Dielectric Elastomer Actuators. IEEE/ASME Transactions on Mechatronics, 2021, 26, 3151-3162.	5.8	23
5	Compact Pneumatic Clutch With Integrated Stiffness Variation and Position Feedback. IEEE Robotics and Automation Letters, 2021, 6, 5697-5704.	5.1	7
6	Multifunctional Robotic Glove with Active-Passive Training Modes for Hand Rehabilitation and Assistance. , 2021, , .		1
7	A Novel Tendon-Driven Soft Actuator with Self-Pumping Property. Soft Robotics, 2020, 7, 130-139.	8.0	29
8	Design and Automatic Fabrication of Novel Bio-Inspired Soft Smart Robotic Hands. IEEE Access, 2020, 8, 155912-155925.	4.2	14
9	Superelastic, Sensitive, and Low Hysteresis Flexible Strain Sensor Based on Wave-Patterned Liquid Metal for Human Activity Monitoring. ACS Applied Materials & English & 2020, 12, 22200-22211.	8.0	152
10	A novel versatile robotic palm inspired by human hand. Engineering Research Express, 2019, 1, 015008.	1.6	13
11	Pre-Charged Pneumatic Soft Gripper With Closed-Loop Control. IEEE Robotics and Automation Letters, 2019, 4, 1402-1408.	5.1	48
12	Soft Robotic Grippers Based on Particle Transmission. IEEE/ASME Transactions on Mechatronics, 2019, 24, 969-978.	5.8	42
13	Principles and methods for stiffness modulation in soft robot design and development. Bio-Design and Manufacturing, 2018, 1, 14-25.	7.7	78
14	Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots. Soft Robotics, 2018, 5, 567-575.	8.0	64
15	Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers. IEEE Transactions on Robotics, 2017, 33, 446-455.	10.3	227
16	Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material. Soft Robotics, 2017, 4, 147-162.	8.0	176
17	Novel Variable-Stiffness Robotic Fingers with Built-In Position Feedback. Soft Robotics, 2017, 4, 338-352.	8.0	100
18	Stiffening of soft robotic actuators — Jamming approaches. , 2017, , .		4

Yingtian Li

#	Article	IF	CITATION
19	Novel Design and Three-Dimensional Printing of Variable Stiffness Robotic Grippers. Journal of Mechanisms and Robotics, 2016, 8, .	2.2	54
20	A Novel, Variable Stiffness Robotic Gripper Based on Integrated Soft Actuating and Particle Jamming. Soft Robotics, 2016, 3, 134-143.	8.0	247
21	3D printing of variable stiffness hyper-redundant robotic arm. , 2016, , .		25
22	A soft robotic spine with tunable stiffness based on integrated ball joint and particle jamming. Mechatronics, 2016, 33, 84-92.	3.3	51
23	Novel Design and 3-D Printing of Nonassembly Controllable Pneumatic Robots. IEEE/ASME Transactions on Mechatronics, 2016, 21, 649-659.	5.8	27
24	3D printing of shape memory polymer for functional part fabrication. International Journal of Advanced Manufacturing Technology, 2016, 84, 2079-2095.	3.0	215
25	The ultimate hyper redundant robotic arm based on omnidirectional joints. , 2015, , .		4