
Justyn Jaworski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11285529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating the Characteristics and Responses of Diacetylene Based Materials as Spray-On Colorimetric Sensors. Macromolecular Research, 2022, 30, 1.	2.4	3
2	Peptide Linked Diacetylene Amphiphiles for Detection of Epitope Specific Antibodies. Chemosensors, 2022, 10, 62.	3.6	1
3	Introduction of Plasmid to the Murine Gut via Consumption of an Escherichia coli Carrier and Examining the Impact of Bacterial Dosing and Antibiotics on Persistence. Regenerative Engineering and Translational Medicine, 2022, 8, 489-497.	2.9	1
4	Engineering a reporter cell line to mimic the high oligomannose presenting surface immunoglobulin of follicular lymphoma B cells. Scientific Reports, 2021, 11, 87.	3.3	1
5	Modifying Polydiacetylene Vesicle Compositions to Reduce Non-Specific Interactions. Macromolecular Research, 2021, 29, 449-452.	2.4	3
6	Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules. Frontiers in Cardiovascular Medicine, 2021, 8, 707897.	2.4	2
7	Self-Assembled Peptide-Labeled Probes for Agglutination-Based Sensing. Macromolecular Research, 2021, 29, 577-581.	2.4	2
8	Tuning the Surface Charge of Self-Assembled Polydiacetylene Vesicles to Control Aggregation and Cell Binding. Biosensors, 2020, 10, 132.	4.7	4
9	Bio-inspired Electronic Nose. , 2020, , 333-362.		0
10	A Peptide–Lectin Fusion Strategy for Developing a Glycan Probe for Use in Various Assay Formats. Chemosensors, 2019, 7, 55.	3.6	5
11	IR-783 Labeling of a Peptide Receptor for †Turn-On' Fluorescence Based Sensing. Chemosensors, 2018, 6, 47.	3.6	4
12	Ultraviolet Patterned Calixarene-Derived Supramolecular Gels and Films with Spatially Resolved Mechanical and Fluorescent Properties. ACS Nano, 2017, 11, 4155-4164.	14.6	27
13	Self-Assembled Tb ³⁺ Complex Probe for Quantitative Analysis of ATP during Its Enzymatic Hydrolysis via Time-Resolved Luminescence in Vitro and in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 722-729.	8.0	38
14	Progression in the Fountain Pen Approach: From 2D Writing to 3D Freeâ€Form Micro/Nanofabrication. Small, 2017, 13, 1600137.	10.0	24
15	Silica formation with nanofiber morphology via helical display of the silaffin R5 peptide on a filamentous bacteriophage. Scientific Reports, 2017, 7, 16212.	3.3	6
16	Cobalt and Magnetite Functionalized Virus Nanofibers for Hydrogen Generation. Journal of Nanoscience and Nanotechnology, 2017, 17, 2116-2123.	0.9	1
17	Luminescent Probe Based Techniques for Hypoxia Imaging. Journal of Nanomedicine Research, 2017, 6, .	1.8	13
18	Determining Chiral Configuration of Diamines via Contact Angle Measurements on Enantioselective Alanine-Appended Benzene-Tricarboxamide Gelators. ACS Applied Materials & Interfaces, 2016, 8, 14102-14108.	8.0	18

JUSTYN JAWORSKI

#	Article	IF	CITATIONS
19	Development and characterization of polyethylenimine nanocarriers processed by an inductive thermospraying technique. Macromolecular Research, 2016, 24, 522-528.	2.4	0
20	NMR detection of chirality and enantiopurity of amines by using benzene tricarboxamide-based hydrogelators as chiral solvating agents. New Journal of Chemistry, 2016, 40, 7917-7922.	2.8	10
21	Fluorometric Measurement of Individual Stomata Activity and Transpiration via a "Brush-onâ€, Water-Responsive Polymer. Scientific Reports, 2016, 6, 32394.	3.3	8
22	Phage based screening strategy for identifying enzyme substrates. Biochemical Engineering Journal, 2016, 105, 446-454.	3.6	2
23	Virus-based assay for antigen detection using infective growth as signal transduction mechanism. Biosensors and Bioelectronics, 2016, 77, 131-136.	10.1	2
24	Microfabrication of Custom Collagen Structures Capable of Guiding Cell Morphology and Alignment. Biomacromolecules, 2015, 16, 1761-1770.	5.4	15
25	Amphiphilic coatings on cobalt boride nanocatalysts for stability in hydrogen generation applications. Macromolecular Research, 2015, 23, 223-226.	2.4	2
26	Supramolecular gels with high strength by tuning of calix[4]arene-derived networks. Nature Communications, 2015, 6, 6650.	12.8	80
27	Chirality control of self-assembled achiral nanofibers using amines in their solid state. Nanoscale, 2015, 7, 15238-15244.	5.6	12
28	Assessing the stability of assembled filamentous phage coat protein P8. Supramolecular Chemistry, 2014, 26, 329-337.	1.2	5
29	A portable and chromogenic enzyme-based sensor for detection of abrin poisoning. Biosensors and Bioelectronics, 2014, 54, 667-673.	10.1	15
30	Promotion of strongly anchored dyes on the surface of titania by tetraethyl orthosilicate treatment for enhanced solar cell performance. Journal of Materials Chemistry A, 2014, 2, 2250-2255.	10.3	11
31	Responsive 3D Microstructures from Virus Building Blocks. Advanced Materials, 2014, 26, 5217-5222.	21.0	12
32	Enzyme directed formation of un-natural side-chains for covalent surface attachment of proteins. Colloids and Surfaces B: Biointerfaces, 2014, 122, 846-850.	5.0	14
33	Virus-based surface patterning of biological molecules, probes, and inorganic materials. Colloids and Surfaces B: Biointerfaces, 2014, 122, 851-856.	5.0	6
34	Chiral Arrangement of Achiral Au Nanoparticles by Supramolecular Assembly of Helical Nanofiber Templates. Journal of the American Chemical Society, 2014, 136, 6446-6452.	13.7	139
35	Reinforcement of a Sugar-Based Bolaamphiphile/Functionalized Graphene Oxide Composite Gel: Rheological and Electrochemical Properties. Langmuir, 2013, 29, 13535-13541.	3.5	18
36	Pyrene-imidazolium complexed graphene for the selective fluorescent detection of G-quadruplex forming DNA. Chemical Communications, 2013, 49, 11698.	4.1	7

JUSTYN JAWORSKI

#	Article	IF	CITATIONS
37	Size-dependent intercalation of alkylamines within polydiacetylene supramolecules. Supramolecular Chemistry, 2013, 25, 54-59.	1.2	15
38	Controlled surface immobilization of viruses via site-specific enzymatic modification. Journal of Materials Chemistry B, 2013, 1, 3486.	5.8	14
39	Controlled Supramolecular Assembly of Helical Silica Nanotube–Graphene Hybrids for Chiral Transcription and Separation. ACS Nano, 2013, 7, 2595-2601.	14.6	55
40	Controlling and Assessing the Surface Display of Cell-Binding Domains on Magnetite Conjugated Fluorescent Liposomes. Langmuir, 2013, 29, 7949-7956.	3.5	10
41	Instant Visual Detection of Picogram Levels of Trinitrotoluene by Using Luminescent Metal–Organic Framework Gelâ€Coated Filter Paper. Chemistry - A European Journal, 2013, 19, 16665-16671.	3.3	43
42	Mesoporous silica nanoparticles functionalized with a thymidine derivative for controlled release. Journal of Materials Chemistry, 2012, 22, 9455.	6.7	19
43	A BODIPY-functionalized bimetallic probe for sensitive and selective color-fluorometric chemosensing of Hg2+. Analyst, The, 2012, 137, 3914.	3.5	32
44	Polydiacetylenes: supramolecular smart materials with a structural hierarchy for sensing, imaging and display applications. Chemical Communications, 2012, 48, 2469.	4.1	209
45	Controlled drug delivery from mesoporous silica using a pH-response release system. New Journal of Chemistry, 2012, 36, 1616.	2.8	25
46	Magnetically Responsive Inorganic/Polydiacetylene Nanohybrids. Macromolecular Chemistry and Physics, 2012, 213, 893-903.	2.2	13
47	The influence of ultrasound on porphyrin-based metallogel formation: efficient control of H- and J-type aggregations. New Journal of Chemistry, 2012, 36, 32-35.	2.8	20
48	Fluorescent Composite Hydrogels of Metal–Organic Frameworks and Functionalized Graphene Oxide. Chemistry - A European Journal, 2012, 18, 765-769.	3.3	45
49	Fluorescence enhancement of a tetrazole-based pyridine coordination polymer hydrogel. New Journal of Chemistry, 2011, 35, 1054.	2.8	31
50	Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. Journal of Materials Chemistry, 2011, 21, 7882.	6.7	35
51	Polydiacetylene Incorporated with Peptide Receptors for the Detection of Trinitrotoluene Explosives. Langmuir, 2011, 27, 3180-3187.	3.5	74
52	Selective and Sensitive TNT Sensors Using Biomimetic Polydiacetylene-Coated CNT-FETs. ACS Nano, 2011, 5, 2824-2830.	14.6	143
53	Polymer-Oligopeptide Composite Coating for Selective Detection of Explosives in Water. Analytical Chemistry, 2009, 81, 4192-4199.	6.5	77
54	Fibroblast remodeling activity at two- and three-dimensional collagen–glycosaminoglycan interfaces. Biomaterials, 2006, 27, 4212-4220.	11.4	22