Alan S Fanning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11284957/publications.pdf

Version: 2024-02-01

159585 377865 6,146 35 30 34 citations h-index g-index papers 35 35 35 6634 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Tight Junction Protein ZO-1 Establishes a Link between the Transmembrane Protein Occludin and the Actin Cytoskeleton. Journal of Biological Chemistry, 1998, 273, 29745-29753.	3.4	1,195
2	The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends in Biochemical Sciences, 1998, 23, 281-282.	7.5	494
3	PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. Journal of Clinical Investigation, 1999, 103, 767-772.	8.2	426
4	ZO-1 Stabilizes the Tight Junction Solute Barrier through Coupling to the Perijunctional Cytoskeleton. Molecular Biology of the Cell, 2009, 20, 3930-3940.	2.1	366
5	Zonula Occludensâ€1 and â€2 Are Cytosolic Scaffolds That Regulate the Assembly of Cellular Junctions. Annals of the New York Academy of Sciences, 2009, 1165, 113-120.	3.8	325
6	Protein modules as organizers of membrane structure. Current Opinion in Cell Biology, 1999, 11, 432-439.	5.4	304
7	Protein–protein interactions: PDZ domain networks. Current Biology, 1996, 6, 1385-1388.	3.9	268
8	Isolation and functional characterization of the actinâ€binding region in the tight junction protein ZOâ€1. FASEB Journal, 2002, 16, 1-23.	0.5	256
9	Transmembrane Proteins in the Tight Junction Barrier. Journal of the American Society of Nephrology: JASN, 1999, 10, 1337-1345.	6.1	251
10	Tricellulin Is a Tight-Junction Protein Necessary for Hearing. American Journal of Human Genetics, 2006, 79, 1040-1051.	6.2	248
11	Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Molecular Biology of the Cell, 2012, 23, 577-590.	2.1	208
12	Setting up a selective barrier at the apical junction complex. Current Opinion in Cell Biology, 2004, 16, 140-145.	5.4	200
13	Occludin is required for cytokine-induced regulation of tight junction barriers. Journal of Cell Science, 2010, 123, 2844-2852.	2.0	170
14	Remodeling the zonula adherens in response to tension and the role of afadin in this response. Journal of Cell Biology, 2016, 213, 243-260.	5.2	157
15	The Unique-5 and -6 Motifs of ZO-1 Regulate Tight Junction Strand Localization and Scaffolding Properties. Molecular Biology of the Cell, 2007, 18, 721-731.	2.1	120
16	Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1. Journal of Cell Science, 2013, 126, 1565-75.	2.0	115
17	Structure of the Conserved Cytoplasmic C-terminal Domain of Occludin: Identification of the ZO-1 Binding Surface. Journal of Molecular Biology, 2005, 352, 151-164.	4.2	105
18	Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton, 2011, 68, 653-660.	2.0	100

#	Article	IF	Citations
19	ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture. Journal of Cell Science, 2017, 130, 243-259.	2.0	99
20	Dimerization of the Scaffolding Protein ZO-1 through the Second PDZ Domain. Journal of Biological Chemistry, 2006, 281, 24671-24677.	3.4	86
21	Biotin ligase tagging identifies proteins proximal to E-cadherin, including lipoma preferred partner, a regulator of epithelial cell-cell and cell-substrate adhesion. Journal of Cell Science, 2014, 127, 885-95.	2.0	84
22	The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. Journal of Biological Chemistry, 2018, 293, 17317-17335.	3.4	72
23	Connexin-Occludin Chimeras Containing the Zo-Binding Domain of Occludin Localize at Mdck Tight Junctions and Nrk Cell Contacts. Journal of Cell Biology, 1999, 146, 683-693.	5.2	65
24	ZO-1 recruitment to \hat{l}_{\pm} -catenin: a novel mechanism for coupling the assembly of tight junctions to adherens junctions. Journal of Cell Science, 2013, 126, 3904-15.	2.0	65
25	The Src Homology 3 Domain Is Required for Junctional Adhesion Molecule Binding to the Third PDZ Domain of the Scaffolding Protein ZO-1. Journal of Biological Chemistry, 2011, 286, 43352-43360.	3.4	64
26	The single <i>Drosophila </i> i>ZO-1 protein Polychaetoid regulates embryonic morphogenesis in coordination with Canoe/afadin and Enabled. Molecular Biology of the Cell, 2011, 22, 2010-2030.	2.1	61
27	Domain Swapping within PDZ2 Is Responsible for Dimerization of ZO Proteins. Journal of Biological Chemistry, 2007, 282, 37710-37716.	3.4	48
28	Structural Basis of a Key Factor Regulating the Affinity between the Zonula Occludens First PDZ Domain and Claudins. Journal of Biological Chemistry, 2015, 290, 16595-16606.	3.4	46
29	ZO Proteins Redundantly Regulate the Transcription Factor DbpA/ZONAB. Journal of Biological Chemistry, 2014, 289, 22500-22511.	3.4	38
30	Insights into Regulated Ligand Binding Sites from the Structure of ZO-1 Src Homology 3-Guanylate Kinase Module. Journal of Biological Chemistry, 2010, 285, 13907-13917.	3.4	37
31	<i>Drosophila</i> Neurexin IV Interacts with Roundabout and Is Required for Repulsive Midline Axon Guidance. Journal of Neuroscience, 2010, 30, 5653-5667.	3.6	33
32	Chapter 11 Protein Interactions in the Tight Junction: The Role of MAGUK Proteins in Regulating Tight Junction Organization and Function. Current Topics in Membranes, 1996, , 211-235.	0.9	23
33	A Laminin G-EGF-Laminin G Module in Neurexin IV Is Essential for the Apico-Lateral Localization of Contactin and Organization of Septate Junctions. PLoS ONE, 2011, 6, e25926.	2.5	9
34	ZO Proteins and Tight Junction Assembly. , 2006, , 64-75.		6
35	Zonula Occludins (ZO)â€1 and â€2 Regulate Apical Morphogenesis and Zonula Adherens (ZA) Assembly in Polarized MDCK cells FASEB Journal, 2011, 25, 242.4.	0.5	2