
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11284892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prevalence of Diarrheagenic <i>Escherichia coli</i> (DEC) and <i>Salmonella</i> spp. with zoonotic potential in urban rats in Salvador, Brazil. Epidemiology and Infection, 2021, 149, e128.	2.1	4
2	Demographic drivers of Norway rat populations from urban slums in Brazil. Urban Ecosystems, 2021, 24, 801-809.	2.4	6
3	Deterministic processes structure bacterial genetic communities across an urban landscape. Nature Communications, 2019, 10, 2643.	12.8	19
4	Factors affecting carriage and intensity of infection of Calodium hepaticum within Norway rats (Rattus norvegicus) from an urban slum environment in Salvador, Brazil. Epidemiology and Infection, 2017, 145, 334-338.	2.1	10
5	Evidence of multiple intraspecific transmission routes for <i>Leptospira</i> acquisition in Norway rats (<i>Rattus norvegicus</i>). Epidemiology and Infection, 2017, 145, 3438-3448.	2.1	30
6	<i>Mycobacterium microti</i> Tuberculosis in Its Maintenance Host, the Field Vole (<i>Microtus) Tj ETQq0 0 0 rg</i>	BT /Overlo	ock,10 Tf 50

7	Host–parasite biology in the real world: the field voles of Kielder. Parasitology, 2014, 141, 997-1017.	1.5	23
8	Mapping the distribution of the main host for plague in a complex landscape in Kazakhstan: An object-based approach using SPOT-5 XS, Landsat 7 ETM+, SRTM and multiple Random Forests. International Journal of Applied Earth Observation and Geoinformation, 2013, 23, 81-94.	2.8	26
9	Increased migration in host–pathogen metapopulations can cause host extinction. Journal of Theoretical Biology, 2012, 298, 1-7.	1.7	32
10	The prevalence of antimicrobial-resistant <i>Escherichia coli</i> in sympatric wild rodents varies by season and host. Journal of Applied Microbiology, 2011, 110, 962-970.	3.1	26
11	Dynamics of the plague–wildlife–human system in Central Asia are controlled by two epidemiological thresholds. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14527-14532.	7.1	62
12	Microbe Interactions Undermine Predictions—Response. Science, 2011, 331, 145-147.	12.6	4
13	Host–pathogen time series data in wildlife support a transmission function between density and frequency dependence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7905-7909.	7.1	118
14	Host condition and individual risk of cowpox virus infection in natural animal populations: cause or effect?. Epidemiology and Infection, 2009, 137, 1295-1301.	2.1	22
15	The abundance threshold for plague as a critical percolation phenomenon. Nature, 2008, 454, 634-637.	27.8	174
16	Parasite interactions in natural populations: insights from longitudinal data. Parasitology, 2008, 135, 767-781.	1.5	104
16 17		1.5 1.5	104 40

#	Article	IF	CITATIONS
19	Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics. Parasitology, 2007, 134, 413.	1.5	67
20	Empirical assessment of a threshold model for sylvatic plague. Journal of the Royal Society Interface, 2007, 4, 649-657.	3.4	22
21	SympatricIxodes triangulicepsandIxodes ricinusTicks Feeding on Field Voles (Microtus agrestis): Potential for Increased Risk ofAnaplasma phagocytophilumin the United Kingdom?. Vector-Borne and Zoonotic Diseases, 2006, 6, 404-410.	1.5	57
22	A role for vector-independent transmission in rodent trypanosome infection?. International Journal for Parasitology, 2006, 36, 1359-1366.	3.1	18
23	Plague dynamics are driven by climate variation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13110-13115.	7.1	242
24	Highly polymorphic microsatellite loci in the bank vole (Clethrionomys glareolus). Molecular Ecology Notes, 2005, 5, 311-313.	1.7	15
25	Trypanosomes, fleas and field voles: ecological dynamics of a host-vector–parasite interaction. Parasitology, 2005, 131, 355-365.	1.5	36
26	Disruption of a host-parasite system following the introduction of an exotic host species. Parasitology, 2005, 130, 661-668.	1.5	130
27	A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiology and Infection, 2002, 129, 147-153.	2.1	388
28	Mycobacterium microti Infection (Vole Tuberculosis) in Wild Rodent Populations. Journal of Clinical Microbiology, 2002, 40, 3281-3285.	3.9	83
29	Host specificity of Trypanosoma (Herpetosoma) species: evidence that bank voles (Clethrionomys) Tj ETQq1 1 0. carry at least two polyphyletic parasites. Parasitology, 2002, 124, 185-190.	.784314 rg 1.5	gBT /Overlo 42
30	New World origins for haemoparasites infecting United Kingdom grey squirrels (Sciurus) Tj ETQq0 0 0 rgBT /Ove England and the United States. Epidemiology and Infection, 2002, 129, 647-653.	rlock 10 Tr 2.1	f 50 307 Td (18
31	Dietary stress reduces the susceptibility of Plodia interpunctella to infection by a granulovirus. Biological Control, 2002, 25, 81-84.	3.0	17
32	Longitudinal monitoring of the dynamics of infections due to Bartonella species in UK woodland rodents. Epidemiology and Infection, 2001, 126, 323-329.	2.1	76
33	The impact of specialized enemies on the dimensionality of host dynamics. Nature, 2001, 409, 1001-1006.	27.8	126
34	A longitudinal study of an endemic disease in its wildlife reservoir: cowpox and wild rodents. Epidemiology and Infection, 2000, 124, 551-562.	2.1	88
35	What causes generation cycles in populations of stored-product moths?. Journal of Animal Ecology, 2000, 69, 352-366.	2.8	64
36	Invasion sequence affects predator–prey dynamics in a multi-species interaction. Nature, 2000, 405, 448-450.	27.8	57

#	Article	IF	CITATIONS
37	Antibiotic resistance found in wild rodents. Nature, 1999, 401, 233-234.	27.8	207
38	Persistence of Tick-borne Virus in the Presence of Multiple Host Species: Tick Reservoirs and Parasite Mediated Competition. Journal of Theoretical Biology, 1999, 200, 111-118.	1.7	169
39	Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1939-1945.	2.6	163
40	Cowpox: reservoir hosts and geographic range. Epidemiology and Infection, 1999, 122, 455-460.	2.1	203
41	Factors affecting host selection in an insect host-parasitoid interaction. Ecological Entomology, 1997, 22, 225-230.	2.2	51
42	The effect of cowpox virus infection on fecundity in bank voles and wood mice. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1457-1461.	2.6	79
43	Cowpox in British voles and mice. Journal of Comparative Pathology, 1997, 116, 35-44.	0.4	85
44	Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella : a test of the mass action assumption with an insect pathogen. Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 75-81.	2.6	64
45	Differential cannibalism and population dynamics in a host-parasitoid system. Oecologia, 1996, 105, 189-193.	2.0	33
46	Parasitism of Baculovirus-Infected Plodia interpunctella by Venturia canescens and Subsequent Virus Transmission. Functional Ecology, 1996, 10, 586.	3.6	26
47	Venturia canescens parasitizing Plodia interpunctella: host vulnerability — a matter of degree. Ecological Entomology, 1995, 20, 199-201.	2.2	13
48	Carryover Effects on Interclonal Competition in the Grass Holcus lanatus: A Response Surface Analysis. Oikos, 1995, 72, 411.	2.7	8
49	Host-Host-Pathogen Models and Microbial Pest Control: The Effect of Host Self Regulation. Journal of Theoretical Biology, 1994, 169, 275-287.	1.7	52
50	Physiological integration among tillers of Holcus lanatus: age-dependence and responses to clipping and competition. New Phytologist, 1994, 128, 737-747.	7.3	36
51	The Influence of Larval Age on the Response of Plodia interpunctella to a Granulosis Virus. Journal of Invertebrate Pathology, 1994, 63, 107-110.	3.2	46
52	The Effects of a Sublethal Baculovirus Infection in the Indian Meal Moth, Plodia interpunctella. Journal of Animal Ecology, 1994, 63, 541.	2.8	85
53	Long-Term Population Dynamics of the Indian meal Moth Plodia interpunctella and its Granulosis Virus. Journal of Animal Ecology, 1994, 63, 861.	2.8	64
54	The Effect of Clipping on Interclonal Competition in the Grass Holcus Lanatus–A Response Surface Analysis. Journal of Ecology, 1994, 82, 259.	4.0	11

#	Article	IF	CITATIONS
55	Carryover effects on the clonal growth of the grass Holcus lanatus L New Phytologist, 1993, 124, 301-307.	7.3	21
56	A host-host-pathogen model with free-living infective stages, applicable to microbial pest control. Journal of Theoretical Biology, 1991, 148, 305-329.	1.7	51
57	Timing of life cycles in a seasonal environment: the temperature-dependence of embryogenesis and diapause in a grasshopper (Chorthippus brunneus Thunberg). Oecologia, 1989, 78, 237-241.	2.0	19
58	Genetic variation in a semi-natural Drosophila population after a bottleneck I. Lethals, their allelism and effective population size. Genetica, 1985, 66, 11-20.	1.1	11
59	Genetic variation in a semi-natural Drosophila melanogaster population after a bottleneck II. The relative fitnesses of second chromosomes. Genetica, 1985, 66, 173-181.	1.1	2
60	The ontogeny and cost of migration in Drosophila subobscura Collin. Biological Journal of the Linnean Society, 1983, 19, 9-15.	1.6	20
61	The effective size of a natural Drosophila subobscura population. Heredity, 1977, 38, 13-18.	2.6	36
62	Density estimates ofDrosophilain Southern England. Journal of Natural History, 1975, 9, 315-320.	0.5	9
63	A model of competition. Oecologia, 1975, 20, 363-367.	2.0	18
64	Coprophagy and the diurnal cycle of the Common shrew, <i>Sorex araneus</i> . Journal of Zoology, 1975, 177, 449-453.	1.7	14