Lawrence G Lum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11284118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bispecific antibodies for the treatment of breast cancer. Expert Opinion on Biological Therapy, 2022, 22, 1017-1027.	3.1	10
2	LICHT enhanced bispecific antibody armed T-cells to treat immunotherapy resistant colon cancer. Oncogene, 2022, 41, 2054-2068.	5.9	7
3	Broad reactivity and enhanced potency of recombinant anti-EGFR × anti-CD3 bispecific antibody-armed activated T cells against solid tumours. Annals of Medicine, 2022, 54, 1047-1057.	3.8	4
4	Anti-tumor and immune modulating activity of T cell induced tumor-targeting effectors (TITE). Cancer Immunology, Immunotherapy, 2021, 70, 633-656.	4.2	5
5	Priming of pancreatic cancer cells with bispecific antibody armed activated T cells sensitizes tumors for enhanced chemoresponsiveness. Oncolmmunology, 2021, 10, 1930883.	4.6	7
6	Potent ex vivo armed T cells using recombinant bispecific antibodies for adoptive immunotherapy with reduced cytokine release. , 2021, 9, e002222.		24
7	Arming "old guards―with "new dual-targeting weapons― Cancer Cell, 2021, 39, 604-606.	16.8	3
8	Phase II clinical trial using anti-CD3 × anti-HER2 bispecific antibody armed activated T cells (HER2 BATs) consolidation therapy for HER2 negative (0–2+) metastatic breast cancer. , 2021, 9, e002194.		16
9	Bispecific Antibody Armed Metabolically Enhanced Headless CAR T Cells. Frontiers in Immunology, 2021, 12, 690437.	4.8	11
10	Bispecific antibody-activated T cells enhance NK cell-mediated antibody-dependent cellular cytotoxicity. Journal of Hematology and Oncology, 2021, 14, 204.	17.0	13
11	Anti-CS1 × Anti-CD3 Bispecific Antibody (BiAb)-Armed Anti-CD3 Activated T Cells (CS1-BATs) Kill CS1+ Myeloma Cells and Release Type-1 Cytokines. Frontiers in Oncology, 2020, 10, 544.	2.8	11
12	Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR) Tj ETQq() 0 0 rgBT 4.6	/Overlock 1
13	Enhanced cytotoxicity against solid tumors by bispecific antibody-armed CD19 CAR T cells: a proof-of-concept study. Journal of Cancer Research and Clinical Oncology, 2020, 146, 2007-2016.	2.5	13
14	Treatment of hematological malignancies with T cell redirected bispecific antibodies: current status and future needs. Expert Opinion on Biological Therapy, 2019, 19, 707-720.	3.1	10
15	Bispecific antibody based therapeutics: Strengths and challenges. Blood Reviews, 2018, 32, 339-347.	5.7	120
16	Bispecific Antibody Armed T Cells to Target Cancer Cells. Methods in Molecular Biology, 2018, 1722, 117-126.	0.9	3

17	Immune Modulation Therapy and Imaging: Workshop Report. Journal of Nuclear Medicine, 2018, 59, 410-417.	5.0	23

18 Immune T cells can transfer and boost anti-breast cancer immunity. Oncolmmunology, 2018, 7, e1500672. 4.6 18

#	Article	IF	CITATIONS
19	Targeting advanced pancreatic cancer with activated t cells armed with anti-CD3 x anti-EGFR bispecific antibody Journal of Clinical Oncology, 2018, 36, 4108-4108.	1.6	5
20	Specific Adoptive T-Cell Therapy for Viral and Fungal Infections. , 2018, , 395-411.		1
21	Fluoroquinolone prophylaxis in autologous hematopoietic stem cell transplant recipients. Supportive Care in Cancer, 2017, 25, 2593-2601.	2.2	11
22	Incidence, etiology, and outcome of pleural effusions in allogeneic hematopoietic stem cell transplantation. American Journal of Hematology, 2016, 91, E341-7.	4.1	25
23	"NextGen―Biologics: Bispecific Antibodies and Emerging Clinical Results. Expert Opinion on Biological Therapy, 2016, 16, 675-688.	3.1	37
24	Targeting CD138â^'/CD20+ Clonogenic Myeloma Precursor Cells Decreases These Cells and Induces Transferable Antimyeloma Immunity. Biology of Blood and Marrow Transplantation, 2016, 22, 869-878.	2.0	16
25	<i>In Situ</i> immunization by bispecific antibody targeted T cell therapy in breast cancer. Oncolmmunology, 2016, 5, e1055061.	4.6	9
26	Preferential expression of functional IL-17R in glioma stem cells: potential role in self-renewal. Oncotarget, 2016, 7, 6121-6135.	1.8	30
27	Cancer Immunology and Immunotherapy. Anticancer Research, 2016, 36, 5593-5606.	1.1	69
28	Vaccination with bispecific antibody armed T cells (BATC) in metastatic breast cancer patients and transfer of anti-breast cancer immunity in primed T cells after stem cell transplant: a proof of principle study. , 2015, 3, .		0
29	Activated T cells armed with bispecific antibodies kill tumor targets. Current Opinion in Hematology, 2015, 22, 476-483.	2.5	17
30	Five advanced pancreatic cancer patients in a Phase I study of anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (BATS). , 2015, 3, P55.		5
31	Phase I Study of Anti-CD3 x Anti-Her2 Bispecific Antibody in Metastatic Castrate Resistant Prostate Cancer Patients. Prostate Cancer, 2015, 2015, 1-10.	0.6	53
32	Targeted T-cell Therapy in Stage IV Breast Cancer: A Phase I Clinical Trial. Clinical Cancer Research, 2015, 21, 2305-2314.	7.0	85
33	BEAM Conditioning Regimen Has Higher Toxicity Compared With High-Dose Melphalan for Salvage Autologous Hematopoietic Stem Cell Transplantation in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, 531-535.	0.4	18
34	Hematopoietic Cell Transplantation and Cellular Therapeutics in the Treatment of Childhood Malignancies. Pediatric Clinics of North America, 2015, 62, 257-273.	1.8	9
35	Transfer of anti-breast cancer immunity induced by infusions of bispecific antibody armed T cells and boosted with ex vivo primed T cells after stem cell transplant in metastatic breast cancer patients Journal of Clinical Oncology, 2015, 33, 3076-3076.	1.6	1
36	Targeted cancer immunotherapy via combination of designer bispecific antibody and novel gene-engineered T cells. Journal of Translational Medicine, 2014, 12, 347.	4.4	32

#	Article	IF	CITATIONS
37	Ipilimumab augments antitumor activity of bispecific antibody-armed T cells. Journal of Translational Medicine, 2014, 12, 191.	4.4	23
38	Maspin expression in prostate tumor elicits host anti-tumor immunity. Oncotarget, 2014, 5, 11225-11236.	1.8	22
39	Influence of Race on Outcomes in Multiple Myeloma Patients with Renal Dysfunction Undergoing High Dose Therapy Followed By Autologous Stem Cell Transplant. Blood, 2014, 124, 5904-5904.	1.4	1
40	Outcomes of Second Autologous Peripheral Blood Stem Cell Transplant in Multiple Myeloma Patients with Renal Dysfunction. Blood, 2014, 124, 5894-5894.	1.4	0
41	Outcomes in Patients on Hemodialysis Who Undergo High Dose Therapy Followed By Autologous Peripheral Blood Stem Cell Transplant for Multiple Myeloma in the Era of Novel Agents. Blood, 2014, 124, 2518-2518.	1.4	0
42	Microenvironment generated during EGFR targeted killing of pancreatic tumor cells by ATC inhibits myeloid-derived suppressor cells through COX2 and PGE2 dependent pathway. Journal of Translational Medicine, 2013, 11, 35.	4.4	31
43	Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies. BMC Cancer, 2013, 13, 83.	2.6	31
44	Generation and immunologic functions of Th17 cells in malignant gliomas. Cancer Immunology, Immunotherapy, 2013, 62, 75-86.	4.2	19
45	CD20-Targeted T Cells after Stem Cell Transplantation for High Risk and Refractory Non-Hodgkin's Lymphoma. Biology of Blood and Marrow Transplantation, 2013, 19, 925-933.	2.0	35
46	Immunotherapy and Immune Evasion in Prostate Cancer. Cancers, 2013, 5, 569-590.	3.7	19
47	Targeting Cytomegalovirus-Infected Cells Using T Cells Armed with Anti-CD3 × Anti-CMV Bispecific Antibody. Biology of Blood and Marrow Transplantation, 2012, 18, 1012-1022.	2.0	19
48	Antiâ€CD3 × antiâ€CD2 bispecific antibody redirects Tâ€cell cytolytic activity to neuroblastoma targe Pediatric Blood and Cancer, 2012, 59, 1198-1205.	2ts 1.5	70
49	A Th1 cytokine–enriched microenvironment enhances tumor killing by activated T cells armed with bispecific antibodies and inhibits the development of myeloid-derived suppressor cells. Cancer Immunology, Immunotherapy, 2012, 61, 497-509.	4.2	45
50	Scutellaria extract and wogonin inhibit tumor-mediated induction of Treg cells via inhibition of TGF-β1 activity. Cancer Immunology, Immunotherapy, 2012, 61, 701-711.	4.2	31
51	Activated T cells from umbilical cord blood armed with anti D3 × anti D20 bispecific antibody mediate specific cytotoxicity against CD20+ targets with minimal allogeneic reactivity: a strategy for providing antitumor effects after cord blood transplants. Transfusion, 2012, 52, 63-75.	1.6	6
52	The immunological contribution of NF-κB within the tumor microenvironment: A potential protective role of zinc as an anti-tumor agent. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1825, 160-172.	7.4	23
53	Pan-Bcl-2 Inhibitor AT-101 Enhances Tumor Cell Killing by EGFR Targeted T Cells. PLoS ONE, 2012, 7, e47520.	2.5	12
54	Targeting T Cells with Bispecific Antibodies for Cancer Therapy. BioDrugs, 2011, 25, 365-379.	4.6	36

#	Article	IF	CITATIONS
55	Induction of Specific Cellular and Humoral Responses Against Renal Cell Carcinoma After Combination Therapy With Cryoablation and Granulocyte-Macrophage Colony Stimulating Factor. Journal of Immunotherapy, 2011, 34, 457-467.	2.4	53
56	In vitro synthesis of primary specific anti-breast cancer antibodies by normal human peripheral blood mononuclear cells. Cancer Immunology, Immunotherapy, 2011, 60, 1707-1720.	4.2	15
57	Bispecific Antibodies for Arming Activated T Cells and Other Effector Cells for Tumor Therapy. , 2011, , 243-271.		2
58	Effect of disruption of Akt-1 of lin-c-kit+ stem cells on myocardial performance in infarcted heart. Cardiovascular Research, 2010, 87, 704-712.	3.8	17
59	Role of donor lymphocyte infusions in relapsed hematological malignancies after stem cell transplantation revisited. Cancer Treatment Reviews, 2010, 36, 528-538.	7.7	123
60	Cancer therapy with bispecific antibodies: Clinical experience. Current Opinion in Molecular Therapeutics, 2010, 12, 340-9.	2.8	45
61	"Large Pericardial Effusions as a Manifestation of Graft Versus Host Disease: a Single Institution Retrospective Studyâ€. Blood, 2009, 114, 4659-4659.	1.4	0
62	Development and prospects for bispecific antibody-based therapeutics in cancer and other applications. Expert Opinion on Drug Discovery, 2008, 3, 1081-1097.	5.0	3
63	Targeting human CD34 ⁺ hematopoietic stem cells with anti-CD45 × anti-myosin light-chain bispecific antibody preserves cardiac function in myocardial infarction. Journal of Applied Physiology, 2008, 104, 1793-1800.	2.5	28
64	Method of treating tumor growth and metastasis by using trifunctional antibodies to reduce the risk for graft-versus-host disease in allogeneic antitumor cell therapy. Expert Opinion on Therapeutic Patents, 2007, 17, 459-464.	5.0	0
65	Antibody Targeting of Stem Cells to Infarcted Myocardium. Stem Cells, 2007, 25, 712-717.	3.2	78
66	Phase I Trial of Multiple Infusions of Autologous Activated T Cells with Anti-CD3 x Anti-CD20 Bispecific Antibody (CD20Bi) after Autologous Peripheral Blood Stem Cell Transplant for NonHodgkins Lymphoma To Improve Graft-vs-Lymphoma Effects Blood, 2007, 110, 4488-4488.	1.4	1
67	Enhanced Killing of Primary Ovarian Cancer by Retargeting Autologous Cytokine-Induced Killer Cells with Bispecific Antibodies: A Preclinical Study. Clinical Cancer Research, 2006, 12, 1859-1867.	7.0	114
68	The new face of bispecific antibodies: targeting cancer and much more. Experimental Hematology, 2006, 34, 1-6.	0.4	31
69	Anti-CD3 × Anti-Epidermal Growth Factor Receptor (EGFR) Bispecific Antibody Redirects T-Cell Cytolytic Activity to EGFR-Positive Cancers In vitro and in an Animal Model. Clinical Cancer Research, 2006, 12, 183-190.	7.0	96
70	Human T Cells Armed with Her2/neu Bispecific Antibodies Divide, Are Cytotoxic, and Secrete Cytokines with Repeated Stimulation. Clinical Cancer Research, 2006, 12, 569-576.	7.0	70
71	The Haploimmunostorm Syndrome: A Distinct Clinical Entity Seen in HLA-Haploidentical Cellular Immunotherapy Blood, 2006, 108, 2978-2978.	1.4	0
72	T cells armed with anti-CD3 × anti-CD20 bispecific antibody enhance killing of CD20+ malignant B cells and bypass complement-mediated rituximab resistance in vitro. Experimental Hematology, 2005, 33, 452-459.	0.4	57

#	Article	IF	CITATIONS
73	Virtual reality of stem cell transplantation to repair injured myocardium. Journal of Cellular Biochemistry, 2005, 95, 869-874.	2.6	2
74	Retargeting T cells and immune effector cells with bispecific antibodies. Cancer Chemotherapy and Biological Response Modifiers, 2005, 22, 273-291.	0.5	25
75	Preclinical studies comparing different bispecific antibodies for redirecting T cell cytotoxicity to extracellular antigens on prostate carcinomas. Anticancer Research, 2005, 25, 43-52.	1.1	14
76	How Important Is HER2/neu Amplification and Expression when Selecting Patients for HER2/neu–Targeted Therapies?. Clinical Breast Cancer, 2004, 5, 70-71.	2.4	2
77	Redirected T-cell cytotoxicity to epithelial cell adhesion molecule-overexpressing adenocarcinomas by a novel recombinant antibody, E3Bi, in vitro and in an animal model. Cancer, 2004, 100, 1095-1103.	4.1	31
78	Anti-CD3 × Anti-HER2 Bispecific Antibody Effectively Redirects Armed T Cells to Inhibit Tumor Development and Growth in Hormone-Refractory Prostate Cancer–Bearing Severe Combined Immunodeficient Beige Mice. Clinical Prostate Cancer, 2004, 3, 112-121.	2.1	33
79	Targeting of Linâ^'Sca+ hematopoietic stem cells with bispecific antibodies to injured myocardium. Blood Cells, Molecules, and Diseases, 2004, 32, 82-87.	1.4	29
80	Infusions of T Cells Armed with Anti-CD3 x Anti-Her2/neu Bispecific Antibody Modulate In Vivo Patient Immune Responses in Phase I Clinical Trials for Breast and Hormone Refractory Prostate Cancers Blood, 2004, 104, 1349-1349.	1.4	6
81	Mini-Haploidentical Transplantation for Refractory Acute Myeloid Leukemia Blood, 2004, 104, 2150-2150.	1.4	2
82	Human Stem Cells Armed with Bispecific Antibodies Home to Injury-Specific Molecules in Myocardial Infarcts in Nude Rats Blood, 2004, 104, 2697-2697.	1.4	3
83	Phase I/II Study of Treatment of Stage IV Breast Cancer with OKT3 x Trastuzumab—Armed Activated T Cells. Clinical Breast Cancer, 2003, 4, 212-217.	2.4	5
84	Immunology and Immunotherapy of Head and Neck Cancer. , 2003, , 569-591.		1
85	Phase I/II Study of Treatment of Stage IV Breast Cancer with OKT3 x Trastuzumab–Armed Activated T Cells. Clinical Breast Cancer, 2003, 4, 212-217.	2.4	21
86	Future prospects for patient care utilizing autologous lymphoid and hematopoietic stem cells. Medicine and Health, Rhode Island, 2003, 86, 247-8.	0.1	1
87	Immune Modulation in Cancer Patients After Adoptive Transfer of Anti-CD3/Anti-CD28–Costimulated T Cells—Phase I Clinical Trial. Journal of Immunotherapy, 2001, 24, 408-419.	2.4	42
88	Activated T-Cell and Bispecific Antibody Immunotherapy for High-Risk Breast Cancer. Acta Haematologica, 2001, 105, 130-136.	1.4	16
89	Use of Anti-CD3 × Anti-HER2/neu Bispecific Antibody for Redirecting Cytotoxicity of Activated T Cells Toward HER2/neu+Tumors. Journal of Hematotherapy and Stem Cell Research, 2001, 10, 247-260.	1.8	85
90	Prevention of Hemorrhagic Cystitis Following Allogeneic Bone Marrow Transplant Preparative Regimens With Cyclophosphamide and Busulfan: Role of Continuous Bladder Irrigation. Journal of Urology, 1995, 153, 637-640.	0.4	38

#	Article	IF	CITATIONS
91	Preclinical Studies Using Immobilized OKT3 to Activate Human T Cells for Adoptive Immunotherapy: Optimal Conditions for the Proliferation and Induction of Non-MHC-Restricted Cytotoxicity. Clinical Immunology and Immunopathology, 1994, 70, 234-240.	2.0	38
92	Specific Humoral Immunity in the Elderly: in vivo and in vitro Response to Vaccination. Journal of Gerontology, 1993, 48, B231-B236.	1.9	138
93	PRECLINICAL STUDIES FOR ADOPTIVE IMMUNOTHERAPY IN BONE MARROW TRANSPLANTATION. Transplantation, 1993, 56, 351-355.	1.0	24
94	Immunodeficiency and the role of suppressor cells after human bone marrow transplantation. Clinical Immunology and Immunopathology, 1992, 63, 103-109.	2.0	9
95	lgG anti-tetanus toxoid antibody synthesis by human bone marrow. I. Two distinct populations of marrow B cells and functional differences between marrow and peripheral blood B cells. Journal of Clinical Immunology, 1990, 10, 255-264.	3.8	14
96	Immune Recovery After Bone Marrow Transplantation. Hematology/Oncology Clinics of North America, 1990, 4, 659-675.	2.2	57
97	Decreased specific antibody synthesis in old adults: Decreased potency of antigen-specific B cells with aging. Mechanisms of Ageing and Development, 1990, 53, 229-241.	4.6	43
98	Recapitulation of immune ontogeny: A vital component for the success of bone marrow transplantation. Cancer Treatment and Research, 1990, 50, 27-54.	0.5	6
99	Transfer of Allergen-Specific IgE-Mediated Hypersensitivity with Allogeneic Bone Marrow Transplantation. New England Journal of Medicine, 1988, 319, 1623-1628.	27.0	186
100	PHENOTYPICAL AND FUNCTIONAL STUDIES ON A SUBTYPE OF SUPPRESSOR CELLS (CD8+/CD11+) IN PATIENTS AFTER BONE MARROW TRANSPLANTATION. Transplantation, 1987, 44, 381-386.	1.0	11
101	In vitro immunoglobulin production, proliferation, and cell markers before and after antithymocyte globulin therapy in patients with aplastic anemia. American Journal of Hematology, 1987, 26, 1-15.	4.1	7
102	ANTIGEN-SPECICIC ANTIBODY RESPONSES OF LYMPHOCTYES TO TETANUS TOXOID AFTER HUMAN MARROW TRANSPLANTATION. Transplantation, 1986, 41, 587-592.	1.0	17
103	The transfer of antigen-specific humoral immunity from marrow donors to marrow recipients. Journal of Clinical Immunology, 1986, 6, 389-396.	3.8	45
104	IgG anti-tetanus toxoid antibody production induced by Epstein-Barr virus from B cells of human marrow transplant recipients. Cellular Immunology, 1986, 101, 266-273.	3.0	9
105	Marrow transplant experience in children with acute lymphoblastic leukemia: An analysis of factors associated with survival, relapse, and graft-versus-host disease. Medical and Pediatric Oncology, 1985, 13, 165-172.	1.0	69
106	Is the Leuocyte groupâ€5a antigen associated with reduced NK cell function?. Tissue Antigens, 1985, 25, 107-110.	1.0	5
107	IMMUNOLOGIC RECOVERY IN HUMAN MARROW GRAFT RECIPIENTS GIVEN CYCLOSPORINE OR METHOTREXATE FOR THE PREVENTION OF GRAFT-VERSUS-HOST DISEASE. Transplantation, 1984, 37, 456-460.	1.0	39
108	The regulatory roles of T4 and T8 subsets in tetanus toxoid-induced in vitro immunoglobulin production. Cellular Immunology, 1983, 82, 184-195.	3.0	6

#	Article	IF	CITATIONS
109	THYMUS TRANSPLANTATION AFTER ALLOGENEIC BONE MARROW GRAFT TO PREVENT CHRONIC GRAFT-VERSUS-HOST DISEASE IN HUMANS. Transplantation, 1982, 33, 168-173.	1.0	49
110	In vitro regulation of immunoglobulin synthesis by T-cell subpopulations defined by a new human T-cell antigen (9.3). Cellular Immunology, 1982, 72, 122-129.	3.0	64