
Paul Shapiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11283086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib). Molecular Cancer Therapeutics, 2017, 16, 2351-2363.	4.1	166
2	Insulin-like Growth Factor-1 Regulates Endogenous RUNX2 Activity in Endothelial Cells through a Phosphatidylinositol 3-Kinase/ERK-dependent and Akt-independent Signaling Pathway. Journal of Biological Chemistry, 2004, 279, 42709-42718.	3.4	139
3	Identification of Novel Extracellular Signal-Regulated Kinase Docking Domain Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 4586-4595.	6.4	112
4	Cell Cycle-dependent Phosphorylation of the RUNX2 Transcription Factor by cdc2 Regulates Endothelial Cell Proliferation. Journal of Biological Chemistry, 2006, 281, 7118-7128.	3.4	99
5	Ras-MAP Kinase Signaling Pathways and Control of Cell Proliferation: Relevance to Cancer Therapy. Critical Reviews in Clinical Laboratory Sciences, 2002, 39, 285-330.	6.1	93
6	Tyrosine-Phosphorylated Extracellular Signal–Regulated Kinase Associates with the Golgi Complex during G2/M Phase of the Cell Cycle. Journal of Cell Biology, 2001, 153, 1355-1368.	5.2	67
7	Smallâ€Molecule Inhibitors of the ERK Signaling Pathway: Towards Novel Anticancer Therapeutics. ChemMedChem, 2011, 6, 38-48.	3.2	67
8	Characterization of ATP-independent ERK inhibitors identified through in silico analysis of the active ERK2 structure. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6281-6287.	2.2	61
9	Phosphorylation regulates nucleophosmin targeting to the centrosome during mitosis as detected by cross-reactive phosphorylation-specific MKK1/MKK2 antibodies. Biochemical Journal, 2004, 378, 857-865.	3.7	52
10	Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells. Journal of Biological Chemistry, 2017, 292, 13890-13901.	3.4	47
11	Requirement for phosphatidylinositol-3 kinase activity during progression through S-phase and entry into mitosis. Cellular Signalling, 2003, 15, 667-675.	3.6	44
12	Exosomal Proteome Profiling: A Potential Multi-Marker Cellular Phenotyping Tool to Characterize Hypoxia-Induced Radiation Resistance in Breast Cancer. Proteomes, 2013, 1, 87-108.	3.5	44
13	Structure-based design of N-substituted 1-hydroxy-4-sulfamoyl-2-naphthoates as selective inhibitors of the Mcl-1 oncoprotein. European Journal of Medicinal Chemistry, 2016, 113, 273-292.	5.5	42
14	Characterization of ERK Docking Domain Inhibitors that Induce Apoptosis by Targeting Rsk-1 and Caspase-9. BMC Cancer, 2011, 11, 7.	2.6	35
15	Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf. Biochemical Journal, 2015, 467, 425-438.	3.7	35
16	Cdc2-mediated Inhibition of Epidermal Growth Factor Activation of the Extracellular Signal-regulated Kinase Pathway during Mitosis. Journal of Biological Chemistry, 2005, 280, 24524-24531.	3.4	33
17	Hyperglycemia Regulates RUNX2 Activation and Cellular Wound Healing through the Aldose Reductase Polyol Pathway. Journal of Biological Chemistry, 2009, 284, 17947-17955.	3.4	32
18	Novel Noncatalytic Substrate-Selective p38α-Specific MAPK Inhibitors with Endothelial-Stabilizing and Anti-Inflammatory Activity. Journal of Immunology, 2017, 198, 3296-3306.	0.8	31

PAUL SHAPIRO

#	Article	IF	CITATIONS
19	Development of Extracellular Signal-Regulated Kinase Inhibitors. Current Topics in Medicinal Chemistry, 2009, 9, 678-689.	2.1	30
20	Structural modifications of (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione that improve selectivity for inhibiting the proliferation of melanoma cells containing active ERK signaling. Organic and Biomolecular Chemistry, 2013, 11, 3706.	2.8	29
21	Extracellular Signal-Regulated Kinase Positively Regulates the Oncogenic Activity of MCT-1 in Diffuse Large B-Cell Lymphoma. Cancer Research, 2009, 69, 7835-7843.	0.9	28
22	Effects of ATPâ€competitive and functionâ€selective ERK inhibitors on airway smooth muscle cell proliferation. FASEB Journal, 2019, 33, 10833-10843.	0.5	25
23	Use of Inhibitors in the Study of MAP Kinases. Methods in Molecular Biology, 2010, 661, 107-122.	0.9	22
24	Immunomodulatory Nanoparticles Mitigate Macrophage Inflammation via Inhibition of PAMP Interactions and Lactate-Mediated Functional Reprogramming of NF-κB and p38 MAPK. Pharmaceutics, 2021, 13, 1841.	4.5	20
25	Identification of a C-terminal Region That Regulates Mitogen-activated Protein Kinase Kinase-1 Cytoplasmic Localization and ERK Activation. Journal of Biological Chemistry, 2001, 276, 48494-48501.	3.4	18
26	Kinase inhibitors in the treatment of obstructive pulmonary diseases. Current Opinion in Pharmacology, 2020, 51, 11-18.	3.5	16
27	Targeting breast cancer metabolism with a novel inhibitor of mitochondrial ATP synthesis. Oncotarget, 2020, 11, 3863-3885.	1.8	13
28	Targeting mitochondrial metabolism for metastatic cancer therapy. Molecular Carcinogenesis, 2022, 61, 827-838.	2.7	13
29	Protein Phosphatase 2A Activity Associated with Golgi Membranes during the G2/M Phase May Regulate Phosphorylation of ERK2. Journal of Biological Chemistry, 2005, 280, 11590-11598.	3.4	11
30	Using Caenorhabditis elegans as a model organism for evaluating extracellular signal-regulated kinase docking domain inhibitors. Journal of Cell Communication and Signaling, 2008, 2, 81-92.	3.4	11
31	A temperature-dependent conformational shift in p38α MAPK substrate–binding region associated with changes in substrate phosphorylation profile. Journal of Biological Chemistry, 2019, 294, 12624-12637.	3.4	9
32	Avoiding or Co-Opting ATP Inhibition: Overview of Type III, IV, V, and VI Kinase Inhibitors. , 2020, , 29-59.		9
33	Mechanistic Analysis of an Extracellular Signal–Regulated Kinase 2–Interacting Compound that Inhibits Mutant BRAF-Expressing Melanoma Cells by Inducing Oxidative Stress. Journal of Pharmacology and Experimental Therapeutics, 2021, 376, 84-97.	2.5	5
34	Discovering New MAP Kinase Inhibitors. Chemistry and Biology, 2006, 13, 807-809.	6.0	3
35	Proteomic Changes in the Monolayer and Spheroid Melanoma Cell Models of Acquired Resistance to BRAF and MEK1/2 Inhibitors. ACS Omega, 2022, 7, 3293-3311.	3.5	3
36	ERK2 Substrate Binding Domains Perform Opposing Roles in Pathogenesis of a JAK2V617F-Driven Myeloproliferative Neoplasm. Blood, 2021, 138, 2547-2547.	1.4	2

#	Article	IF	CITATIONS
37	A promiscuous kinase inhibitor reveals secrets to cancer cell survival. Journal of Biological Chemistry, 2019, 294, 8674-8675.	3.4	Ο
38	Comparisons of ATPâ€competitive (Type I) versus functionâ€selective (Type IV) ERK Inhibitors to Prevent Airway Smooth Muscle Cell Proliferation. FASEB Journal, 2019, 33, 793.2.	0.5	0
39	Developing Kinase Inhibitors Using Computer-Aided Drug Design Approaches. , 2020, , 81-108.		0