Nuria Gonzalez-Montalban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11282630/publications.pdf

Version: 2024-02-01

29 papers 1,615 citations

394421 19 h-index ⁵⁵²⁷⁸¹
26
g-index

29 all docs

29 docs citations

times ranked

29

1629 citing authors

#	Article	IF	CITATIONS
1	Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microbial Cell Factories, 2005, 4, 27.	4.0	266
2	Amyloid-like Properties of Bacterial Inclusion Bodies. Journal of Molecular Biology, 2005, 347, 1025-1037.	4.2	217
3	The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnology and Bioengineering, 2007, 96, 1101-1106.	3.3	189
4	Recombinant protein solubility—does more mean better?. Nature Biotechnology, 2007, 25, 718-720.	17.5	119
5	Highly Efficient Protein Misfolding Cyclic Amplification. PLoS Pathogens, 2011, 7, e1001277.	4.7	93
6	Divergent Genetic Control of Protein Solubility and Conformational Quality in Escherichia coli. Journal of Molecular Biology, 2007, 374, 195-205.	4.2	85
7	Peptide-mediated DNA condensation for non-viral gene therapy. Biotechnology Advances, 2009, 27, 432-438.	11.7	73
8	Learning about protein solubility from bacterial inclusion bodies. Microbial Cell Factories, 2009, 8, 4.	4.0	68
9	Relationship between Conformational Stability and Amplification Efficiency of Prions. Biochemistry, 2011, 50, 7933-7940.	2.5	52
10	Functions of galectins as †self/non-self†M-recognition and effector factors. Pathogens and Disease, 2017, 75, .	2.0	52
11	The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind inÂvitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells. Developmental and Comparative Immunology, 2016, 55, 241-252.	2.3	47
12	Changes in prion replication environment cause prion strain mutation. FASEB Journal, 2013, 27, 3702-3710.	0.5	42
13	The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells. Microbial Cell Factories, 2006, 5, 26.	4.0	38
14	The Functional Quality of Soluble Recombinant Polypeptides Produced in Escherichia coli Is Defined by a Wide Conformational Spectrum. Applied and Environmental Microbiology, 2008, 74, 7431-7433.	3.1	37
15	Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. Journal of Biotechnology, 2005, 118, 406-412.	3.8	35
16	Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. Journal of Biotechnology, 2005, 119, 163-171.	3.8	31
17	In situ protein folding and activation in bacterial inclusion bodies. Biotechnology and Bioengineering, 2008, 100, 797-802.	3.3	29
18	Reversible off and on switching of prion infectivity via removing and reinstalling prion sialylation. Scientific Reports, 2016, 6, 33119.	3.3	27

#	Article	IF	CITATIONS
19	Amyloid-linked cellular toxicity triggered by bacterial inclusion bodies. Biochemical and Biophysical Research Communications, 2007, 355, 637-642.	2.1	22
20	Prion replication environment defines the fate of prion strain adaptation. PLoS Pathogens, 2018, 14, e1007093.	4.7	19
21	Assessment of Strain-Specific PrPSc Elongation Rates Revealed a Transformation of PrPSc Properties during Protein Misfolding Cyclic Amplification. PLoS ONE, 2012, 7, e41210.	2.5	17
22	Inclusion bodies of fuculoseâ€1â€phosphate aldolase as stable and reusable biocatalysts. Biotechnology Progress, 2012, 28, 421-427.	2.6	17
23	Nanoparticulate architecture of protein-based artificial viruses is supported by protein–DNA interactions. Nanomedicine, 2011, 6, 1047-1061.	3.3	14
24	Analytical Approaches for Assessing Aggregation of Protein Biopharmaceuticals. Current Pharmaceutical Biotechnology, 2011, 12, 1530-1536.	1.6	13
25	Manipulating Galectin Expression in Zebrafish (Danio rerio). Methods in Molecular Biology, 2015, 1207, 327-341.	0.9	11
26	Comparative analysis of E. coli inclusion bodies and thermal protein aggregates. Microbial Cell Factories, 2006, 5, P16.	4.0	1
27	Systems-Level Analysis of Protein Quality in Inclusion Body-Forming Escherichia coli Cells. , 2009, , 295-326.		1
28	Cellular toxicity triggered by bacterial inclusion bodies. Microbial Cell Factories, 2006, 5, P9.	4.0	0
29	Manipulating Galectin Expression in (Danio rerio). Methods in Molecular Biology, 2022, 2442, 425-443.	0.9	O