List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/112826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gamma knife stereotactic radiosurgery as an effective tool in primary CNS lymphoma: Evaluation of stereotactic radiosurgery and methotrexate treatment in a prospective and observational clinical research study. Clinical Neurology and Neurosurgery, 2021, 201, 106457.	1.4	8
2	Oleoylethanolamide Delays the Dysfunction and Death of Purkinje Cells and Ameliorates Behavioral Defects in a Mouse Model of Cerebellar Neurodegeneration. Neurotherapeutics, 2021, 18, 1748-1767.	4.4	3
3	The Selective Loss of Purkinje Cells Induces Specific Peripheral Immune Alterations. Frontiers in Cellular Neuroscience, 2021, 15, 773696.	3.7	4
4	Secretagogin expression in the mouse olfactory bulb under sensory impairments. Scientific Reports, 2020, 10, 21533.	3.3	8
5	Letter to the Editor Regarding Effects of the COVID-19 Outbreak in Northern Italy: Perspectives from the Bergamo Neurosurgery Department, and the Role of Radiosurgery as a Minimally Invasive Procedure for Primary Central Nervous System Lymphoma in the Pandemic Outbreak. World Neurosurgery. 2020. 139. 264-265.	1.3	2
6	Daily bone marrow cell transplantations for the management of fast neurodegenerative processes. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1702-1711.	2.7	11
7	Highly Active Antiretroviral Therapy and Gamma Knife Radiosurgery for the Treatment of AIDS-Related Primary Central Nervous System Lymphoma. World Neurosurgery, 2019, 124, 310-312.	1.3	2
8	Cytoskeleton stability is essential for the integrity of the cerebellum and its motor- and affective-related behaviors. Scientific Reports, 2018, 8, 3072.	3.3	23
9	Bone marrow transplantation improves motor activity in a mouse model of ataxia. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1950-e1961.	2.7	10
10	Olfactory bulb plasticity ensures proper olfaction after severe impairment in postnatal neurogenesis. Scientific Reports, 2017, 7, 5654.	3.3	22
11	Bone Marrow–Derived Stem Cells and Strategies for Treatment of Nervous System Disorders. Neuroscientist, 2015, 21, 637-652.	3.5	11
12	Striatal NOS1 has dimorphic expression and activity under stress and nicotine sensitization. European Neuropsychopharmacology, 2015, 25, 1683-1694.	0.7	4
13	Bone Marrow TransplantationTransplantation for Research and Regenerative Therapies in the Central Nervous System. Methods in Molecular Biology, 2015, 1254, 317-325.	0.9	1
14	Nuclear Signs of Pre-neurodegeneration. Methods in Molecular Biology, 2015, 1254, 43-54.	0.9	2
15	Sex-influence of nicotine and nitric oxide on motor coordination and anxiety-related neurophysiological responses. Psychopharmacology, 2014, 231, 695-706.	3.1	12
16	Pax6 Is Essential for the Maintenance and Multi-Lineage Differentiation of Neural Stem Cells, and for Neuronal Incorporation into the Adult Olfactory Bulb. Stem Cells and Development, 2014, 23, 2813-2830.	2.1	45
17	The Olfactory System as a Puzzle: Playing With Its Pieces. Anatomical Record, 2013, 296, 1383-1400.	1.4	20
18	Differential glial activation during the degeneration of Purkinje cells and mitral cells in the PCD mutant mice. Glia, 2013, 61, 254-272.	4.9	21

#	Article	IF	CITATIONS
19	Bone Marrow Cell Transplantation Restores Olfaction in the Degenerated Olfactory Bulb. Journal of Neuroscience, 2012, 32, 9053-9058.	3.6	23
20	Mild Cerebellar Neurodegeneration of Aged Heterozygous PCD Mice Increases Cell Fusion of Purkinje and Bone Marrow-Derived Cells. Cell Transplantation, 2012, 21, 1595-1602.	2.5	22
21	Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss. Neuroscience, 2012, 201, 20-33.	2.3	6
22	Long-lasting changes in the anatomy of the olfactory bulb after ionizing irradiation and bone marrow transplantation. Neuroscience, 2011, 173, 190-205.	2.3	26
23	Bone Marrow Contributes Simultaneously to Different Neural Types in the Central Nervous System through Different Mechanisms of Plasticity. Cell Transplantation, 2011, 20, 1179-1192.	2.5	21
24	Nucleolar Disruption and Cajal Body Disassembly are Nuclear Hallmarks of DNA Damageâ€Induced Neurodegeneration in Purkinje Cells. Brain Pathology, 2011, 21, 374-388.	4.1	55
25	Types of cholecystokinin ontaining periglomerular cells in the mouse olfactory bulb. Journal of Neuroscience Research, 2011, 89, 35-43.	2.9	9
26	Purkinje Cell Degeneration in pcd Mice Reveals Large Scale Chromatin Reorganization and Gene Silencing Linked to Defective DNA Repair. Journal of Biological Chemistry, 2011, 286, 28287-28302.	3.4	43
27	Chemical Characterization of Pax6-Immunoreactive Periglomerular Neurons in the Mouse Olfactory Bulb. Cellular and Molecular Neurobiology, 2009, 29, 1081-1085.	3.3	10
28	Sexual dimorphic stages affect both proliferation and serotonergic innervation in the adult rostral migratory stream. Experimental Neurology, 2009, 216, 357-364.	4.1	23
29	Albumin attenuates DNA damage in primary-cultured neurons. Neuroscience Letters, 2009, 450, 23-26.	2.1	21
30	Zincergic innervation from the anterior olfactory nucleus to the olfactory bulb displays plastic responses after mitral cell loss. Journal of Chemical Neuroanatomy, 2008, 36, 197-208.	2.1	4
31	Distribution of Neurocalcin-Containing Neurons Reveals Sexual Dimorphism in the Mouse Olfactory Bulb. Chemical Senses, 2007, 32, 673-680.	2.0	9
32	Changes in cell migration and survival in the olfactory bulb of thepcd/pcd mouse. Developmental Neurobiology, 2007, 67, 839-859.	3.0	20
33	Chemical organization of the macaque monkey olfactory bulb: III. Distribution of cholinergic markers. Journal of Comparative Neurology, 2007, 501, 854-865.	1.6	8
34	Changes in the connections of the main olfactory bulb after mitral cell selective neurodegeneration. Journal of Neuroscience Research, 2007, 85, 2407-2421.	2.9	12
35	Sex differences in catechol contents in the olfactory bulb of control and unilaterally deprived rats. European Journal of Neuroscience, 2007, 25, 1517-1528.	2.6	14
36	Changes in the serotonergic system in the main olfactory bulb of rats unilaterally deprived from birth to adulthood. Journal of Neurochemistry, 2007, 100, 924-938.	3.9	15

#	Article	IF	CITATIONS
37	Pre-neurodegeneration of mitral cells in the pcd mutant mouse is associated with DNA damage, transcriptional repression, and reorganization of nuclear speckles and Cajal bodies. Molecular and Cellular Neurosciences, 2006, 33, 283-295.	2.2	31
38	Differential effects of unilateral olfactory deprivation on noradrenergic and cholinergic systems in the main olfactory bulb of the rat. Neuroscience, 2006, 141, 2117-2128.	2.3	15
39	Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb. Journal of Chemical Neuroanatomy, 2005, 29, 238-254.	2.1	42
40	Proliferation markers in the adult rodent brain: Bromodeoxyuridine and proliferating cell nuclear antigen. Brain Research Protocols, 2005, 15, 127-134.	1.6	32
41	CD45 expression on rat acinar cells: Involvement in pro-inflammatory cytokine production. FEBS Letters, 2005, 579, 6355-6360.	2.8	23
42	Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. Journal of Comparative Neurology, 2004, 474, 75-107.	1.6	135
43	Dopaminergic modulation of nNOS expression in the pituitary gland of male rat. Anatomy and Embryology, 2003, 207, 381-388.	1.5	12
44	Changes in Immunoreactivity to Calcium-Binding Proteins in the Anterior Olfactory Nucleus of the Rat after Neonatal Olfactory Deprivation. Experimental Neurology, 2002, 177, 133-150.	4.1	21
45	Vasoactive intestinal polypeptide-containing elements in the olfactory bulb of the hedgehog (Erinaceus europaeus). Journal of Chemical Neuroanatomy, 2002, 24, 49-63.	2.1	16
46	Effects of axotomy on the expression of NADPH-diaphorase in the visual pathway of the tench. Brain Research, 2002, 925, 183-194.	2.2	5
47	Effects of chronic nicotine administration on nitric oxide synthase expression and activity in rat brain. Journal of Neuroscience Research, 2002, 67, 689-697.	2.9	18
48	Volumetric Changes in the Anterior Olfactory Nucleus of the Rat after Neonatal Olfactory Deprivation. Experimental Neurology, 2001, 171, 379-390.	4.1	11
49	Bilateral olfactory deprivation reveals a selective noradrenergic regulatory input to the olfactory bulb. Neuroscience, 2001, 102, 1-10.	2.3	22
50	Renal ischemia in the rat stimulates glomerular nitric oxide synthesis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R771-R779.	1.8	30
51	Calretinin-, neurocalcin-, and parvalbumin-immunoreactive elements in the olfactory bulb of the hedgehog (Erinaceus europaeus). Journal of Comparative Neurology, 2001, 429, 554-570.	1.6	26
52	Chemical organization of the macaque monkey olfactory bulb: II. Calretinin, calbindin Dâ€28k, parvalbumin, and neurocalcin immunoreactivity. Journal of Comparative Neurology, 2001, 432, 389-407.	1.6	33
53	A Sexually Dimorphic Group of Atypical Glomeruli in the Mouse Olfactory Bulb. Chemical Senses, 2001, 26, 7-15.	2.0	28
54	Calretinin-, neurocalcin-, and parvalbumin-immunoreactive elements in the olfactory bulb of the hedgehog (Erinaceus europaeus). Journal of Comparative Neurology, 2001, 429, 554-70.	1.6	4

#	Article	IF	CITATIONS
55	Expression of neuronal nitric oxide synthase/NADPH-diaphorase during olfactory deafferentation and regeneration. European Journal of Neuroscience, 2000, 12, 1177-1193.	2.6	32
56	Subcellular localization of m2 muscarinic receptors in GABAergic interneurons of the olfactory bulb. European Journal of Neuroscience, 2000, 12, 3963-3974.	2.6	40
57	Co-localization of cart peptide immunoreactivity and nitric oxide synthase activity in rat hypothalamus. Brain Research, 2000, 868, 352-357.	2.2	20
58	Distribution of the calcium-binding proteins parvalbumin, calbindin D-28k and calretinin in the retina of two teleosts. Journal of Chemical Neuroanatomy, 2000, 19, 1-15.	2.1	42
59	Distribution of acetylcholinesterase and choline acetyltransferase in the main and accessory olfactory bulbs of the hedgehog(Erinaceus europaeus). , 1999, 403, 53-67.		15
60	Coexpression of neurocalcin with other calcium-binding proteins in the rat main olfactory bulb. , 1999, 407, 404-414.		40
61	Distribution of parvalbumin immunoreactivity in the brain of the tench (Tinca tinca L., 1758). , 1999, 413, 549-571.		31
62	Calretinin immunoreactivity in the anterior olfactory nucleus of the rat. Brain Research, 1998, 789, 101-110.	2.2	10
63	Neurocalcin immunoreactivity in the rat main olfactory bulb. Brain Research, 1998, 795, 204-214.	2.2	13
64	Parvalbumin immunoreactivity during the development of the cerebellum of the rainbow trout. Developmental Brain Research, 1998, 109, 221-227.	1.7	22
65	NADPH-diaphorase histochemistry reveals heterogeneity in the distribution of nitric oxide synthase-expressing interneurons between olfactory glomeruli in two mouse strains. Journal of Neuroscience Research, 1998, 53, 239-250.	2.9	11
66	Chemical anatomy of the Macaque monkey olfactory bulb: NADPH-diaphorase/nitric oxide synthase activity. Journal of Comparative Neurology, 1998, 402, 419-434.	1.6	32
67	Neurocalcin-immunoreactive cells in the rat hippocampus are GABAergic interneurons. , 1998, 8, 2-23.		11
68	Co-localization of calretinin and parvalbumin with nicotinamide adenine dinucleotide phosphate-diaphorase in tench Mauthner cells. Neuroscience Letters, 1998, 250, 107-110.	2.1	11
69	Transient expression of calretinin in the trout habenulo-interpeduncular system during development. Neuroscience Letters, 1998, 254, 9-12.	2.1	10
70	Partial co-existence of NADPH-diaphorase and acetylcholinesterase in the hypothalamic magnocellular secretory nuclei of the rat. Journal of Chemical Neuroanatomy, 1998, 14, 71-78.	2.1	15
71	Nonspecific Labeling of Myelin with Secondary Antisera and High Concentrations of Triton X-100. Journal of Histochemistry and Cytochemistry, 1998, 46, 109-117.	2.5	17
72	NADPH-diaphorase/nitric oxide synthase-positive elements in the human olfactory bulb. NeuroReport, 1998, 9, 3141-3146.	1.2	10

#	Article	IF	CITATIONS
73	Neurocalcinâ€immunoreactive cells in the rat hippocampus are GABAergic interneurons. Hippocampus, 1998, 8, 2-23.	1.9	1
74	Tyrosine hydroxylase-like immunoreactivity in the brain of the teleost fish Tinca tinca. Archives Italiennes De Biologie, 1998, 136, 17-44.	0.4	18
75	McAB 300 antibody against calbindin D-28K is a glial marker in the teleost brain. Archives Italiennes De Biologie, 1998, 136, 77-81.	0.4	3
76	Chemical anatomy of the macaque monkey olfactory bulb: NADPH-diaphorase/nitric oxide synthase activity. Journal of Comparative Neurology, 1998, 402, 419-34.	1.6	12
77	Segregated distribution of TH-immunoreactivity in olfactory glomeruli. NeuroReport, 1997, 8, 2311-2316.	1.2	7
78	Calretinin- and parvalbumin-immunoreactive neurons in the rat main olfactory bulb do not express NADPH-diaphorase activity. Journal of Chemical Neuroanatomy, 1997, 13, 253-264.	2.1	26
79	Calcium-binding proteins in the periglomerular region of typical and atypical olfactory glomeruli. Brain Research, 1997, 745, 293-302.	2.2	35
80	Calretinin immunoreactivity in the developing olfactory system of the rainbow trout. Developmental Brain Research, 1997, 100, 101-109.	1.7	35
81	Transient expression of NADPH-diaphorase/nitric oxide synthase in the paratenial nucleus of the rat thalamus. Developmental Brain Research, 1997, 101, 177-186.	1.7	4
82	Distribution of NADPH-diaphorase and nitric oxide synthase in relation to catecholaminergic neuronal structures in the brain of the lizard Gekko gecko. Journal of Comparative Neurology, 1997, 377, 121-41.	1.6	15
83	Segregated distribution of nitric oxide synthase-positive cells in the periglomerular region of typical and atypical olfactory glomeruli. Neuroscience Letters, 1996, 205, 149-152.	2.1	12
84	Nitric oxide synthase activity in the olfactory bulb of anuran and urodele amphibians. Brain Research, 1996, 724, 67-72.	2.2	24
85	Nitric oxide synthase in the brain of a urodele amphibian (Pleurodeles waltl) and its relation to catecholaminergic neuronal structures. Brain Research, 1996, 727, 49-64.	2.2	61
86	Neurocalcin immunoreactivity in the rat accessory olfactory bulb. Brain Research, 1996, 729, 82-89.	2.2	12
87	Topographical distribution of NADPH-diaphorase activity in the central nervous system of the frog,Rana perezi. Journal of Comparative Neurology, 1996, 367, 54-69.	1.6	88
88	Cholinergic innervation of the primate hippocampal formation: II. Effects of fimbria/fornix transection. , 1996, 375, 527-551.		41
89	NADPH-DIAPHORASE AND GnRH: ANATOMICAL RELATIONSHIP IN THE RAT HYPOTHALAMUS . Biomedical Research, 1996, 17, 359-364.	0.9	0
90	Neurocalcin immunoreactivity in the rat accessory olfactory bulb. Brain Research, 1996, 729, 82-9.	2.2	0

#	Article	IF	CITATIONS
91	Absence of coexistence between NADPH-diaphorase and antidiuretic hormone in the hypothalamus of two galliforms: Japanese quail (Coturnix japonica) and chicken (Gallus domesticus). Neuroscience Letters, 1996, 216, 155-8.	2.1	3
92	Calbindin D-28k and parvalbumin expression in mitotic cells of rat primary cortical cultures. NeuroReport, 1995, 6, 1137-1140.	1.2	1
93	NADPHâ€diaphorase active and calbindin Dâ€28kâ€immunoreactive neurons and fibers in the olfactory bulb of the hedgehog (<i>Erinaceus europaeus</i>). Journal of Comparative Neurology, 1995, 351, 307-327.	1.6	45
94	NADPHâ€Ðiaphorase in the central nervous system of the tench (<i>tinca tinca</i> L., 1758). Journal of Comparative Neurology, 1995, 352, 398-420.	1.6	66
95	Cholinergin innervation of the primate hippocampal formation. I. Distribution of choline acetyltransferasse immunoreactivity in theMacaca fascicularis andMacaca mulatta monkeys. Journal of Comparative Neurology, 1995, 355, 135-170.	1.6	59
96	Calretinin-like immunoreactivity in the optic tectum of the tench (Tinca tinca L.). Brain Research, 1995, 671, 112-118.	2.2	23
97	Calbindin D-28k immunoreactivity in the rat accessory olfactory bulb. Brain Research, 1995, 689, 93-100.	2.2	12
98	Colocalization of NADPH-diaphorase and acetylcholinesterase in the rat olfactory bulb. Journal of Chemical Neuroanatomy, 1995, 9, 207-216.	2.1	11
99	Histochemical localization of NADPH-diaphorase in the rat accessory olfactory bulb. Chemical Senses, 1994, 19, 413-424.	2.0	19
100	Topographical distribution of reduced nicotinamide adenine dinucleotide phosphateâ€diaphorase in the brain of the Japanese quail. Journal of Comparative Neurology, 1994, 342, 97-114.	1.6	80
101	Coexistence of NADPH-diaphorase with vasopressin and oxytocin in the hypothalamic magnocellular neurosecretory nuclei of the rat. Cell and Tissue Research, 1994, 276, 31-34.	2.9	117
102	Parvalbumin immunoreactivity in the telencephalic hemispheres of the tench, Tinca tinca. Archives Italiennes De Biologie, 1994, 132, 1-12.	0.4	5
103	Nicotinamide-adenine-dinucleotide-phosphate diaphorase-positive neurons and fibers in the nucleus olfactorius anterior of the rat. Archives Italiennes De Biologie, 1994, 132, 13-24.	0.4	5
104	Calretinin immunoreactivity in the magnocellular neurosecretory nuclei of the rat hypothalamus. Acta Histochemica, 1993, 95, 177-184.	1.8	5
105	Calbindin D-28K and NADPH-diaphorase activity are localized in different populations of periglomerular cells in the rat olfactory bulb. Journal of Chemical Neuroanatomy, 1993, 6, 1-6.	2.1	51
106	Volumetric Analysis of the Telencephalon and Tectum During Metamorphosis in a Flatfish, the Turbot <i>Scophthalmus maximus</i> . Brain, Behavior and Evolution, 1993, 41, 1-5.	1.7	15
107	Infrequent cellular coexistence of NADPH-diaphorase and calretinin in the neurosecretory nuclei and adjacent areas of the rat hypothalamus. Journal of Chemical Neuroanatomy, 1993, 6, 335-341.	2.1	30
108	CaBP D-28k and NADPH-diaphorase coexistence in the magnocellular neurosecretory nuclei. NeuroReport, 1992, 3, 249-252.	1.2	38

#	Article	IF	CITATIONS
109	Partial coexistence of NADPH-diaphorase and somatostatin in the rat hypothalamic paraventricular nucleus. Neuroscience Letters, 1992, 148, 101-104.	2.1	44
110	NADPH-diaphorase activity in the hypothalamic magnocellular neurosecretory nuclei of the rat. Brain Research Bulletin, 1992, 28, 599-603.	3.0	111
111	Distribution of calbindin D-28K and parvalbumin immunoreactivities in the nucleus olfactorius anterior of the rat. Brain Research Bulletin, 1992, 29, 783-793.	3.0	9
112	Calbindin D-28K- and parvalbumin-reacting neurons in the hypothalamic magnocellular neurosecretory nuclei of the rat. Brain Research Bulletin, 1992, 28, 39-46.	3.0	21
113	Parvalbumin immunoreactive neurons and fibres in the teleost cerebellum. Anatomy and Embryology, 1992, 185, 355-61.	1.5	32
114	Calbindin D-28k-positive neurons in the rat olfactory bulb. Cell and Tissue Research, 1992, 269, 289-297.	2.9	62
115	An atlas of the brain of the tench (Tinca tinca L., 1758; Cyprinidae, Teleostei). Journal Für Hirnforschung, 1992, 33, 487-97.	0.0	4
116	Staining with Ziehl's fuchsin of semithin sections mounted on slides. Anatomischer Anzeiger, 1991, 173, 117-20.	0.1	0
117	Distribution of parvalbumin-immunoreactivity in the rat thalamus using a monoclonal antibody. Archives Italiennes De Biologie, 1991, 129, 199-210.	0.4	20
118	Interspecies differences in the substance P- and vasoactive intestinal polypeptide-like immunoreactivities in the olfactory bulb ofSalmo gairdneri andBarbus meridionalis. Journal of Neuroscience Research, 1990, 25, 103-111.	2.9	6
119	Distribution of neuropeptide Y-like immunoreactive cell bodies and fibers in the brain stem of the cat. Brain Research Bulletin, 1990, 25, 675-683.	3.0	33
120	Distribution of parvalbumin immunoreactivity in the rat septal area. Brain Research Bulletin, 1990, 24, 41-48.	3.0	28
121	Distribution of neuropeptide Y-like immunoreactive fibers in the cat thalamus. Peptides, 1990, 11, 45-50.	2.4	16
122	Tyrosine Hydroxylase Immunoreactivity in a Subpopulation of Granule Cells in the Olfactory Bulb of Teleost Fish. Brain, Behavior and Evolution, 1989, 34, 318-324.	1.7	21
123	Hippocampo-septal fibers terminate on identified spiny neurons in the lateral septum: A combined Colgi/electron-microscopic and degeneration study in the rat. Cell and Tissue Research, 1989, 258, 243-6.	2.9	25
124	Organization of the septal region in the rat brain: A Golgi/EM study of lateral septal neurons. Journal of Comparative Neurology, 1989, 286, 472-487.	1.6	59
125	Immunocytochemical study of enkephalin-like cell bodies in the thalamus of the rat. Brain Research Bulletin, 1989, 23, 277-281.	3.0	9
126	Neuropeptide Y-like immunoreactivity in the brain stem respiratory nuclei of the cat. Brain Research Bulletin, 1989, 23, 201-207.	3.0	14

#	Article	IF	CITATIONS
127	Substance P-like immunoreactivity in the ganglion cells of the tench terminal nerve. Neuroscience Letters, 1989, 106, 253-257.	2.1	9
128	Distribution of vasoactive intestinal polypeptide-like immunoreactivity in the olfactory bulb of the rainbow trout (Salmo gairdneri). Brain Research, 1989, 490, 385-389.	2.2	13
129	Immunocytochemical study of angiotensin II cell bodies in the rat thalamus. Brain Research, 1989, 481, 185-189.	2.2	6
130	Immunocytochemical study of angiotensin-II fibres and cell bodies in the brainstem respiratory areas of the cat. Brain Research, 1989, 489, 311-317.	2.2	21
131	The Cavum Septi Pellucidi: A Fifth Ventricle?. Cells Tissues Organs, 1989, 134, 286-290.	2.3	4
132	Cell proliferation in the olfactory bulb of adult freshwater teleosts. Journal of Anatomy, 1989, 163, 155-63.	1.5	18
133	Immunocytochemical study of substance P-like cell bodies and fibres in the brain of the rainbow trout, Salmo gairdneri. Journal of Anatomy, 1989, 165, 191-200.	1.5	24
134	Immunocytochemical study of parvalbumin fibers and cell bodies in the rat hipothalamus. Archives Italiennes De Biologie, 1989, 127, 265-73.	0.4	4
135	Comparative study of the anatomy and laminar organization in the olfactory bulb of three orders of freshwater teleosts. Gegenbaurs Morphologisches Jahrbuch, 1989, 135, 241-54.	0.0	0
136	Afferent projections from the brainstem to the area hypothalamica dorsalis: a horseradish peroxidase study in the cat. Archives Italiennes De Biologie, 1989, 127, 165-72.	0.4	0
137	Scanning Electron Microscopy Study of Starch Granule Degradation in Chick-pea Cotyledons. Starch/Staerke, 1988, 40, 211-214.	2.1	2
138	Immunocytochemical study of substance P-like fibres and cell bodies in the cat diencephalon. Journal Für Hirnforschung, 1988, 29, 651-7.	0.0	3
139	A modified watchmaker's forceps for optimal transfer of thin and semithin sections. Biotechnic & Histochemistry, 1988, 63, 376-7.	0.4	0
140	Ruffed cells in the olfactory bulb of freshwater teleosts. I. Golgi impregnation. Journal of Anatomy, 1987, 155, 101-7.	1.5	14
141	Dense osmiophilic material in the surface of the olfactory bulb in the teleost Cyprinus carpio L. Journal Für Hirnforschung, 1987, 28, 233-5.	0.0	1
142	Structural organization of the optic tectum of Barbus meridionalis Risso. I. Inner strata (SPV, SAC and) Tj ETQqO	0 0 rgBT /0	Overlock 10 T

Structural organization of the optic tectum of Barbus meridionalis Risso. II. Outer strata (SFGS, SO) Tj ETQq1 1 0.784314 rgBT /Overlo