Mark Warren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11281071/publications.pdf

Version: 2024-02-01

623734 580821 1,566 25 14 25 h-index citations g-index papers 26 26 26 1529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanisms of Wave Fractionation at Boundaries of High-Frequency Excitation in the Posterior Left Atrium of the Isolated Sheep Heart During Atrial Fibrillation. Circulation, 2006, 113, 626-633.	1.6	386
2	Intra-Atrial Pressure Increases Rate and Organization of Waves Emanating From the Superior Pulmonary Veins During Atrial Fibrillation. Circulation, 2003, 108, 668-671.	1.6	311
3	Cholinergic atrial fibrillation: IK,ACh gradients determine unequal left/right atrial frequencies and rotor dynamics. Cardiovascular Research, 2003, 59, 863-873.	3.8	167
4	Changes in Myocardial Electrical Impedance Induced by Coronary Artery Occlusion in Pigs With and Without Preconditioning. Circulation, 1997, 96, 3079-3086.	1.6	145
5	Blockade of the Inward Rectifying Potassium Current Terminates Ventricular Fibrillation in the Guinea Pig Heart. Journal of Cardiovascular Electrophysiology, 2003, 14, 621-631.	1.7	138
6	Mechanisms of Atrial Fibrillation Termination by Pure Sodium Channel Blockade in an Ionically-Realistic Mathematical Model. Circulation Research, 2005, 96, e35-47.	4.5	126
7	Passive transmission of ischemic ST segment changes in low electrical resistance myocardial infarct scar in the pig. Cardiovascular Research, 1998, 40, 103-112.	3.8	42
8	Effect of remodelling, stretch and ischaemia on ventricular fibrillation frequency and dynamics in a heart failure model. Cardiovascular Research, 2005, 65, 158-166.	3.8	39
9	Percutaneous Electrocatheter Technique for On-Line Detection of Healed Transmural Myocardial Infarction. PACE - Pacing and Clinical Electrophysiology, 2000, 23, 1283-1287.	1.2	28
10	High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1271-H1281.	3.2	25
11	Spatiotemporal Relationship Between Intracellular Ca ²⁺ Dynamics and Wave Fragmentation During Ventricular Fibrillation in Isolated Blood-Perfused Pig Hearts. Circulation Research, 2007, 101, e90-101.	4.5	24
12	Mechanisms Underlying the Antifibrillatory Action of Hyperkalemia in Guinea Pig Hearts. Biophysical Journal, 2010, 98, 2091-2101.	0.5	24
13	Complex structure of electrophysiological gradients emerging during long-duration ventricular fibrillation in the canine heart. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1405-H1418.	3.2	20
14	Metabolic Determinants of Electrical Failure in Ex-Vivo Canine Model of Cardiac Arrest: Evidence for the Protective Role of Inorganic Pyrophosphate. PLoS ONE, 2013, 8, e57821.	2.5	16
15	Blockade of CaMKII depresses conduction preferentially in the right ventricular outflow tract and promotes ischemic ventricular fibrillation in the rabbit heart. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H752-H767.	3.2	14
16	Detection of mitochondrial depolarization/recovery during ischaemia–reperfusion using spectral properties of confocally recorded TMRM fluorescence. Journal of Physiology, 2013, 591, 2781-2794.	2.9	10
17	Conduction in the right and left ventricle is differentially regulated by protein kinases and phosphatases: implications for arrhythmogenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1507-H1527.	3.2	10
18	lonic Currents and Ventricular Fibrillation Dynamics. Revista Espanola De Cardiologia (English Ed), 2004, 57, 69-79.	0.6	9

#	Article	IF	CITATION
19	Role of K _{ATP} channel in electrical depression and asystole during long-duration ventricular fibrillation in ex vivo canine heart. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2396-H2409.	3.2	9
20	Mitochondrial depolarization and asystole in the globally ischemic rabbit heart: coordinated response to interventions affecting energy balance. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H485-H499.	3.2	5
21	CaMKII blockade, cardiac conduction, and arrhythmia. Cardiovascular Research, 2017, 113, 1798-1799.	3.8	5
22	Local Repolarization Abnormalities Induced by Transcatheter Radiofrequency Ablation in Pigs. PACE - Pacing and Clinical Electrophysiology, 1997, 20, 1952-1960.	1.2	4
23	Differential uptake of myocardial perfusion radiotracers in normal, infarcted, and acutely ischemic peri-infarction myocardium. Cardiovascular Research, 1998, 38, 91-97.	3.8	4
24	Evidence Against the Role of Intracellular Calcium Dynamics in Ventricular Fibrillation. Circulation Research, 2008, 102, e103.	4.5	4
25	"Heart Oddity― Intrinsically Reduced Excitability in the Right Ventricle Requires Compensation by Regionally Specific Stress Kinase Function. Frontiers in Physiology, 2020, 11, 86.	2.8	O