Craig P Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11280126/publications.pdf

Version: 2024-02-01

49 papers

4,638 citations

147801 31 h-index 48 g-index

52 all docs 52 docs citations

times ranked

52

3628 citing authors

#	Article	IF	CITATIONS
1	Efficient Homologous Recombination in Mice Using Long Single Stranded DNA and CRISPR Cas9 Nickase. G3: Genes, Genomes, Genetics, 2019, 9, 281-286.	1.8	8
2	Intergenerational Transmission of Gene Regulatory Information in Caenorhabditis elegans. Trends in Genetics, 2018, 34, 54-64.	6.7	47
3	Stable Heritable Germline Silencing Directs Somatic Silencing at an Endogenous Locus. Molecular Cell, 2017, 65, 659-670.e5.	9.7	38
4	Early Developmental Exposure to dsRNA Is Critical for Initiating Efficient Nuclear RNAi in C.Âelegans. Cell Reports, 2017, 18, 2969-2978.	6.4	13
5	SIDT2 Transports Extracellular dsRNA into the Cytoplasm for Innate Immune Recognition. Immunity, 2017, 47, 498-509.e6.	14.3	109
6	SID-1 Functions in Multiple Roles To Support Parental RNAi in <i>Caenorhabditis elegans</i> Caenetics, 2017, 207, 547-557.	2.9	40
7	SID-1 Domains Important for dsRNA Import in <i>Caenorhabditis elegans</i> Genetics, 2017, 7, 3887-3899.	1.8	30
8	The RNA binding protein MEX-3 retains asymmetric activity in the early Caenorhabditis elegans embryo in the absence of asymmetric protein localization. Gene, 2015, 554, 160-173.	2.2	7
9	The DEAD Box Helicase RDE-12 Promotes Amplification of RNAi in Cytoplasmic Foci in C.Âelegans. Current Biology, 2014, 24, 832-838.	3.9	34
10	Natural RNA interference directs a heritable response to the environment. Scientific Reports, 2014, 4, 7387.	3.3	81
11	Assays for Direct and Indirect Effects of C. elegans Endo-siRNAs. Methods in Molecular Biology, 2014, 1173, 71-87.	0.9	1
12	The Nuclear Argonaute NRDE-3 Contributes to Transitive RNAi in <i>Caenorhabditis elegans</i> Genetics, 2013, 194, 117-131.	2.9	17
13	Conserved tyrosine kinase promotes the import of silencing RNA into <i>Caenorhabditis elegans</i> cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14520-14525.	7.1	71
14	A genomic bias for genotype–environment interactions in <i>C. elegans</i> . Molecular Systems Biology, 2012, 8, 587.	7.2	94
15	SID-5 Is an Endosome-Associated Protein Required for Efficient Systemic RNAi in C.Âelegans. Current Biology, 2012, 22, 1938-1943.	3.9	104
16	Uptake of Extracellular Double-Stranded RNA by SID-2. Molecular Cell, 2012, 47, 746-754.	9.7	168
17	RNA interference in <i>Caenorhabditis elegans</i> : Uptake, mechanism, and regulation. Parasitology, 2012, 139, 560-573.	1.5	50
18	The Influence of Competition Among C. elegans Small RNA Pathways on Development. Genes, 2012, 3, 671-685.	2.4	27

#	Article	IF	CITATIONS
19	Vampiric Isolation of Extracellular Fluid from Caenorhabditis elegans . Journal of Visualized Experiments, 2012, , .	0.3	3
20	Two classes of silencing RNAs move between Caenorhabditis elegans tissues. Nature Structural and Molecular Biology, 2011, 18, 1184-1188.	8.2	48
21	SID-1 is a dsRNA-selective dsRNA-gated channel. Rna, 2011, 17, 1057-1065.	3.5	165
22	Tissue Specificity of <i>Caenorhabditis elegans</i> Enhanced RNA Interference Mutants. Genetics, 2011, 188, 235-237.	2.9	45
23	Regulators of the Actin Cytoskeleton Mediate Lethality in a <i>Caenorhabditis elegans dhc-1</i> Mutant. Molecular Biology of the Cell, 2010, 21, 2707-2720.	2.1	6
24	Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode. Genome Biology, 2010, 11, R58.	9.6	18
25	Comparison of diverse developmental transcriptomes reveals that coexpression of gene neighbors is not evolutionarily conserved. Genome Research, 2009, 19, 2214-2220.	5.5	56
26	Export of RNA silencing from <i>C. elegans</i> tissues does not require the RNA channel SID-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2283-2288.	7.1	110
27	The SID-1 double-stranded RNA transporter is not selective for dsRNA length. Rna, 2009, 15, 384-390.	3.5	71
28	Environmental RNA interference. Trends in Genetics, 2008, 24, 297-305.	6.7	232
29	Pairing of competitive and topologically distinct regulatory modules enhances patterned gene expression. Molecular Systems Biology, 2008, 4, 163.	7.2	28
30	Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10565-10570.	7.1	274
31	Progression from mitotic catastrophe to germ cell death in Caenorhabditis elegans lis-1 mutants requires the spindle checkpoint. Developmental Biology, 2007, 305, 397-410.	2.0	8
32	Transport of Sequence-Specific RNA Interference Information Between Cells. Annual Review of Genetics, 2007, 41, 305-330.	7.6	112
33	MyoD, modularity, and myogenesis: conservation of regulators and redundancy in C. elegans. Genes and Development, 2006, 20, 3342-3346.	5.9	18
34	An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18420-18424.	7.1	165
35	The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo. Development (Cambridge), 2005, 132, 1843-1854.	2.5	107
36	Synthetic lethal analysis of Caenorhabditis elegans posterior embryonic patterning genes identifies conserved genetic interactions. Genome Biology, 2005, 6, R45.	9.6	59

#	Article	IF	Citations
37	The STAR/Maxi-KH domain protein GLD-1 mediates a developmental switch in the translational control of C. elegans PAL-1. Development (Cambridge), 2004, 131, 3263-3272.	2.5	66
38	Transport of dsRNA into Cells by the Transmembrane Protein SID-1. Science, 2003, 301, 1545-1547.	12.6	506
39	Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development (Cambridge), 2003, 130, 889-900.	2.5	235
40	Systemic RNAi in C. elegans Requires the Putative Transmembrane Protein SID-1. Science, 2002, 295, 2456-2459.	12.6	771
41	MEX-3 interacting proteins link cell polarity to asymmetric gene expression in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2002, 129, 747-759.	2.5	45
42	MEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans. Development (Cambridge), 2002, 129, 747-59.	2.5	28
43	Gene silencing: Shrinking the black box of RNAi. Current Biology, 2000, 10, R137-R140.	3.9	49
44	Genetics: A touch of elegance with RNAi. Current Biology, 1999, 9, R440-R442.	3.9	66
45	Caenorhabditis elegans: Embryonic Axis Formation; Signalling in Early Development. , 1999, , 233-250.		0
46	Spatial and Temporal Controls Target pal-1 Blastomere-Specification Activity to a Single Blastomere Lineage in C. elegans Embryos. Cell, 1996, 87, 217-226.	28.9	197
47	Specification of anteroposterior cell fates in Caenorhabditis elegans by Drosophila Hox proteins. Nature, 1995, 377, 229-232.	27.8	50
48	Evidence from mosaic analysis of the masculinizing gene her–1for cell interactions inC. eleganssex determination. Nature, 1992, 355, 551-555.	27.8	87
49	The tra-1 gene determines sexual phenotype cell-autonomously in C. elegans. Cell, 1990, 63, 1193-1204.	28.9	70