Chien-Jang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11279630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Device modeling of ferroelectric memory field-effect transistor (FeMFET). IEEE Transactions on Electron Devices, 2002, 49, 1790-1798.	3.0	137
2	Terahertz multichanneled filter in a superconducting photonic crystal. Optics Express, 2010, 18, 27155.	3.4	113
3	THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice. Materials Chemistry and Physics, 2009, 113, 382-384.	4.0	109
4	PROPERTIES OF DEFECT MODES IN ONE-DIMENSIONAL PHOTONIC CRYSTALS. Progress in Electromagnetics Research, 2010, 103, 169-184.	4.4	100
5	BAND GAP EXTENSION IN A ONE-DIMENSIONAL TERNARY METAL-DIELECTRIC PHOTONIC CRYSTAL. Progress in Electromagnetics Research, 2010, 102, 81-93.	4.4	93
6	Temperature dependence of defect mode in a defective photonic crystal. Optics Communications, 2012, 285, 1501-1504.	2.1	93
7	Photonic band structure for a superconductor-dielectric superlattice. Physica C: Superconductivity and Its Applications, 2005, 432, 133-139.	1.2	76
8	Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal. Journal of Applied Physics, 2011, 110, .	2.5	72
9	Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range. Journal of Applied Physics, 2009, 105, .	2.5	65
10	Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure. Solid State Communications, 2013, 157, 54-57.	1.9	42
11	Analysis of tunable photonic band structure in an extrinsic plasma photonic crystal. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 67, 7-11.	2.7	39
12	Analysis of optical properties in cylindrical dielectric photonic crystal. Optics Communications, 2013, 291, 424-434.	2.1	37
13	Tunable defect mode in a semiconductor-dielectric photonic crystal containing extrinsic semiconductor defect. Solid State Communications, 2012, 152, 2189-2192.	1.9	36
14	Analysis of defect mode in a one-dimensional symmetric double-negative photonic crystal containing magnetized cold plasma defect. Applied Optics, 2015, 54, 8602.	2.1	36
15	Optical properties of a superconducting annular periodic multilayer structure. Solid State Communications, 2009, 149, 1888-1893.	1.9	35
16	Magnetic-field tunable multichannel filter in a plasma photonic crystal at microwave frequencies. Applied Optics, 2016, 55, 943.	2.1	33
17	Investigation of photonic band structure in a one-dimensional superconducting photonic crystal. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2089.	2.1	30
18	ENHANCEMENT OF PHOTONIC BAND GAP IN A DISORDERED QUARTER-WAVE DIELECTRIC PHOTONIC CRYSTAL. Progress in Electromagnetics Research, 2010, 100, 27-36.	4.4	27

#	Article	IF	CITATIONS
19	INVESTIGATION OF EFFECTIVE PLASMA FREQUENCIES IN ONE-DIMENSIONAL PLASMA PHOTONIC CRYSTALS. Progress in Electromagnetics Research, 2012, 126, 521-538.	4.4	26
20	Defect modes properties in periodic lossy multilayer containing negative index materials with symmetric and asymmetric geometric structures. Optik, 2014, 125, 839-843.	2.9	26
21	DESIGN RULES FOR A FABRY-PEROT NARROW BAND TRANSMISSION FILTER CONTAINING A METAMATERIAL NEGATIVE-INDEX DEFECT. Progress in Electromagnetics Research Letters, 2009, 9, 101-107.	0.7	25
22	Investigation of optical properties in near-zero-permittivity operation range for a superconducting photonic crystal. Applied Physics A: Materials Science and Processing, 2011, 104, 913-919.	2.3	24
23	Analysis of Effective Plasma Frequency in a Magnetized Extrinsic Photonic Crystal. IEEE Photonics Journal, 2013, 5, 2700706-2700706.	2.0	24
24	Narrowband reflection-and-transmission filter in an annular defective photonic crystal containing an ultrathin metallic film. Optics Communications, 2012, 285, 3143-3149.	2.1	22
25	Filtering Properties of Photonic Crystal Dual-Channel Tunable Filter Containing Superconducting Defects. Journal of Superconductivity and Novel Magnetism, 2014, 27, 67-72.	1.8	22
26	ELECTROMAGNETIC WAVE PROPAGATION CHARACTERISTICS IN A ONE-DIMENSIONAL METALLIC PHOTONIC CRYSTAL. Journal of Nonlinear Optical Physics and Materials, 2008, 17, 255-264.	1.8	21
27	NARROWBAND FILTER IN A HETEROSTRUCTURED MULTILAYER CONTAINING ULTRATHIN METALLIC FILMS. Progress in Electromagnetics Research, 2009, 96, 329-346.	4.4	21
28	Analysis of photonic band structure in a one Optics Express, 2009, 17, 16666.	3.4	21
29	ANGULAR DEPENDENCE OF WAVE REFLECTION IN A LOSSY SINGLE-NEGATIVE BILAYER. Progress in Electromagnetics Research, 2010, 107, 253-267.	4.4	20
30	Properties of defect modes in one-dimensional symmetric defective photonic crystals. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 39-46.	2.7	20
31	TUNABLE PHOTONIC BAND GAP IN A DOPED SEMICONDUCTOR PHOTONIC CRYSTAL IN NEAR INFRARED REGION. Progress in Electromagnetics Research, 2011, 114, 271-283.	4.4	19
32	Single-negative metamaterial periodic multilayer doped by magnetized cold plasma. Applied Optics, 2016, 55, 2086.	2.1	18
33	Analysis of tuning in a photonic crystal multichannel filter containing coupled defects. Optik, 2013, 124, 2028-2032.	2.9	17
34	Optical properties of a high-temperature superconductor operating in near zero-permittivity region. Journal of Applied Physics, 2010, 107, .	2.5	16
35	Analysis of Unidirectional Absorption in a Defective Superconducting Photonic Crystal. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	16
36	Wave properties of an annular periodic multilayer structure containing the single-negative materials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 3594-3600.	2.1	15

#	Article	IF	CITATIONS
37	Investigation of photonic band gap in a one-dimensional lossy DNG/DPS photonic crystal. Solid State Communications, 2010, 150, 644-647.	1.9	15
38	Analysis of defect mode in a dielectric photonic crystal containing ITO defect. Optik, 2014, 125, 7140-7142.	2.9	15
39	Investigation of defect modes in a defective photonic crystal with a semiconductor metamaterial defect. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 64, 146-151.	2.7	15
40	Angular dependence of a narrowband reflection-and-transmission filter containing an ultrathin metallic film. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1141.	2.1	14
41	A MULTICHANNELED FILTER IN A PHOTONIC CRYSTAL CONTAINING COUPLED DEFECTS. Progress in Electromagnetics Research, 2011, 117, 379-392.	4.4	13
42	A mid-infrared tunable filter in a semiconductor–dielectric photonic crystal containing doped semiconductor defect. Solid State Communications, 2011, 151, 1677-1680.	1.9	13
43	Properties of the defect modes in 1D lossy photonic crystals containing two types of negative-index-material defects. Journal of Electromagnetic Waves and Applications, 2013, 27, 2317-2329.	1.6	13
44	Magnetic-Field Dependence of Effective Plasma Frequency for a Plasma Photonic Crystal. IEEE Photonics Journal, 2013, 5, 4700110-4700110.	2.0	13
45	NEAR INFRARED FILTERING PROPERTIES IN PHOTONIC CRYSTAL CONTAINING EXTRINSIC AND DISPERSIVE SEMICONDUCTOR DEFECT. Progress in Electromagnetics Research, 2013, 137, 359-370.	4.4	13
46	Analysis of tunable transmission properties in photonic crystals containing doped semiconductor. Optics Communications, 2014, 321, 167-171.	2.1	13
47	ENHANCEMENT OF NEAR-INFRARED PHOTONIC BAND GAP IN A DOPED SEMICONDUCTOR PHOTONIC CRYSTAL. Progress in Electromagnetics Research, 2012, 125, 219-235.	4.4	12
48	Microwave surface impedances of BCS superconducting thin films. IEEE Transactions on Applied Superconductivity, 1996, 6, 94-101.	1.7	11
49	Thickness-dependent photonic bandgap in a one-dimensional single-negative photonic crystal. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1506.	2.1	11
50	Magnetooptical Effects in Wave Properties for a Semiconductor Photonic Crystal at Near-Infrared. IEEE Photonics Journal, 2012, 4, 903-911.	2.0	11
51	Analysis of effective plasma frequency in a superconducting photonic crystal. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 366.	2.1	11
52	Field solutions for the Swihart wave and surface plasmon in superconducting/dielectric film multilayer structures in the mixed state. Journal of Applied Physics, 2004, 96, 3348-3356.	2.5	10
53	DESIGN AND ANALYSIS OF MULTICHANNEL TRANSMISSION FILTER BASED ON THE SINGLE-NEGATIVE PHOTONIC CRYSTAL. Progress in Electromagnetics Research, 2013, 136, 561-578.	4.4	10
54	Design of multichannel filters based on the use of periodic Cantor dielectric multilayers. Applied Optics, 2014, 53, 6749.	1.8	10

#	Article	IF	CITATIONS
55	Terahertz transmission properties of a triadic-Cantor-set photonic crystal containing a semiconductor. Optics Communications, 2016, 372, 91-97.	2.1	10
56	Tunable microwave characteristics of a superconducting planar transmission line by using a nonlinear dielectric thin film. Journal of Applied Physics, 2000, 87, 493-497.	2.5	9
57	Simulations of microwave characteristics of high-temperature superconducting microstrip lines by using an empirical two-fluid model. IEEE Transactions on Applied Superconductivity, 2002, 12, 1776-1783.	1.7	9
58	Analysis of angle-dependent unusual transmission in lossy single-negative (SNG) materials. Solid State Communications, 2010, 150, 1729-1732.	1.9	9
59	ANALYSIS OF TRANSMISSION PROPERTIES IN A PHOTONIC QUANTUM WELL CONTAINING SUPERCONDUCTING MATERIALS. Progress in Electromagnetics Research, 2013, 140, 327-340.	4.4	9
60	MICROWAVE PROPERTIES OF A HIGH-TEMPERATURE SUPERCONDUCTOR AND FERROMAGNETIC BILAYER STRUCTURE. Progress in Electromagnetics Research, 2011, 111, 433-445.	4.4	8
61	COMPLEX PHOTONIC BAND STRUCTURES IN A PHOTONIC CRYSTAL CONTAINING LOSSY SEMICONDUCTOR INSB. Progress in Electromagnetics Research, 2012, 131, 153-167.	4.4	8
62	Tunable Multichannel Filter in a Photonic Crystal Containing Semiconductor Photonic Quantum Well. IEEE Photonics Journal, 2012, 4, 283-290.	2.0	8
63	MICROWAVE SURFACE IMPEDANCE OF A NEARLY FERROELECTRIC SUPERCONDUCTOR. Progress in Electromagnetics Research, 2007, 73, 39-47.	4.4	7
64	Angle- and Thickness-Dependent Photonic Band Structure inÂaÂSuperconducting Photonic Crystal. Journal of Superconductivity and Novel Magnetism, 2010, 23, 1395-1399.	1.8	7
65	Microwave Transmission and Reflection for a Type-II Superconducting Superlattice in the Mixed State. Journal of Superconductivity and Novel Magnetism, 2011, 24, 1315-1320.	1.8	7
66	Near-infrared photonic band structure in a semiconductor metamaterial photonic crystal. Applied Optics, 2014, 53, 7285.	2.1	7
67	Near-infrared longitudinal plasmon polariton photonic gaps in a semiconductor metamaterial photonic crystal. Superlattices and Microstructures, 2015, 80, 206-214.	3.1	7
68	Investigation of one-way absorption properties in an asymmetric photonic crystal containing a semiconductor defect. Applied Optics, 2018, 57, 3115.	1.8	7
69	High-frequency vortex response of anisotropic type-II superconductors. Physical Review B, 1996, 54, 665-674.	3.2	6
70	Effective microwave surface impedance of a thin type-II superconducting film in the parallel magnetic field. Journal of Applied Physics, 2003, 93, 3450-3456.	2.5	6
71	Field solution of nonlinear magnetic surface wave for a planar superconductor-antiferromagnet transmission line. Journal of Applied Physics, 2008, 104, 063909.	2.5	6
72	Use of photonic quantum well as tunable defect in multilayer narrowband reflection-and-transmission filter. Optical Review, 2010, 17, 495-498.	2.0	6

#	Article	IF	CITATIONS
73	Design of a terahertz photonic crystal transmission filter containing ferroelectric material. Applied Optics, 2016, 55, 8276.	2.1	6
74	Use of single-negative material as a tunable defect in a dielectric photonic crystal heterostructure. Applied Optics, 2016, 55, 825.	2.1	6
75	Effective microwave surface impedance of superconducting films in the mixed state. IEEE Transactions on Magnetics, 1997, 33, 2348-2355.	2.1	5
76	Microwave propagation characteristics of a high-temperature superconducting variable spacing parallel plate transmission line. Journal of Applied Physics, 2001, 89, 3986-3992.	2.5	5
77	Thickness-dependent effective surface resistances of nearly ferroelectric superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 364, 163-166.	2.1	5
78	ANALYSIS OF DEPENDENCE OF RESONANT TUNNELING ON STATIC POSITIVE PARAMETERS IN A SINGLE-NEGATIVE BILAYE. Progress in Electromagnetics Research, 2011, 118, 151-165.	4.4	5
79	Wave properties of Fibonacci-sequence photonic crystals containing single-negative materials. Solid State Communications, 2013, 168, 42-51.	1.9	5
80	Thickness-Dependent Transmission in a Finite Photonic Crystal Containing Nearly Ferroelectric Superconductor. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-5.	2.9	5
81	Vortex response to the ac field in anisotropic high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1996, 259, 61-68.	1.2	4
82	Propagation characteristics of a thin-film superconducting parallel-plate transmission line in the mixed state. Journal of Applied Physics, 1998, 84, 3263-3266.	2.5	4
83	Microwave response of a nearly ferroelectric superconductor. Journal of Applied Physics, 2006, 100, 063908.	2.5	4
84	Transmission properties in a one-dimensional finite extrinsic semiconductor InSb photonic crystal. Optical Review, 2014, 21, 448-454.	2.0	4
85	Photonic band gap structure for a ferroelectric photonic crystal at microwave frequencies. Applied Optics, 2015, 54, 8738.	2.1	4
86	AC reponse of the vortex liquid in the high-Tc superconducting cylinder. Physica C: Superconductivity and Its Applications, 1996, 260, 8-18.	1.2	3
87	The effect of coherence factor on slow wave propagation in superconducting planar transmission lines. Physica C: Superconductivity and Its Applications, 1997, 277, 292-301.	1.2	3
88	Tunable multilayer narrowband filter containing an ultrathin metallic film and a lithium niobate defect. Optical and Quantum Electronics, 2011, 42, 359-365.	3.3	3
89	Analysis of tunable negative refraction in a lossy and extrinsic semiconductor. Applied Optics, 2015, 54, 658.	1.8	3
90	Microwave response of superconducting platelet crystals. Physical Review B, 1996, 54, 488-496.	3.2	2

#	Article	IF	CITATIONS
91	Field solution of a type-II superconducting thin-film planar asymmetric transmission line in the mixed state. IEEE Transactions on Applied Superconductivity, 1999, 9, 4633-4638.	1.7	2
92	Intrinsic and effective microwave surface impedances of thin superconducting films in DC magnetic field. Physica C: Superconductivity and Its Applications, 2004, 406, 161-168.	1.2	2
93	Optical properties of a nearly ferroelectric superconductor. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1836.	2.1	2
94	Effects of losses on the transmission and reflection in the single-negative materials. Applied Physics A: Materials Science and Processing, 2011, 104, 807-809.	2.3	2
95	Terahertz Negative Refraction in a High-Temperature Superconducting Material. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 230-235.	3.1	2
96	Analysis of multigroup and multichannel filtering properties in a ferroelectric-dielectric periodic multilayer. Applied Optics, 2016, 55, 6630.	2.1	2
97	Anomalous Microwave Transmission in a Superconducting Periodic Multilayer Structure. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2008, 4, 801-804.	0.4	2
98	AC permeability of the flux-line liquid in the anisotropic high-T/sub c/ superconducting crystals. IEEE Transactions on Applied Superconductivity, 1996, 6, 147-154.	1.7	1
99	Microwave properties of a composite superconducting structure in the mixed state. Physica C: Superconductivity and Its Applications, 1998, 305, 293-300.	1.2	1
100	Microwave Resonant Transmission in a Superconducting Fabry–Perot Bilayer. Journal of Superconductivity and Novel Magnetism, 2009, 22, 487-493.	1.8	1
101	Investigation of photonic band gap in a semiconductor-organic photonic crystal in ultraviolet region. Optical Review, 2011, 18, 338-342.	2.0	1
102	Infrared Tunable Multichannel Filter in a Doped Semiconductor-Dielectric Photonic Crystal Heterostructure. IEEE Journal of Quantum Electronics, 2012, 48, 361-366.	1.9	1
103	Analysis of photonic bandgap structure for a polaritonic photonic crystal in negative-index region. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1730.	2.1	1
104	Synchronized time-coupling theory of resonant mode splitting phenomena in a superconducting photonic crystal at terahertz. Optik, 2018, 172, 257-264.	2.9	1
105	The effect of superconducting ground plane on microwave characteristics of unpatterned superconducting films in the mixed state. IEEE Transactions on Applied Superconductivity, 1998, 8, 192-202.	1.7	0
106	Universal behavior of magnetization curves in Rb[sub 3]C[sub 60] fullerene. , 1999, , .		0
107	Angular dependence of microwave transmission and reflection of type-II superconducting film in the mixed state. Physica C: Superconductivity and Its Applications, 1999, 321, 39-48.	1.2	0
108	Analysis of microwave characteristics of a variable spacing planar high-temperature superconducting waveguide in DC magnetic field. Physica C: Superconductivity and Its Applications, 2003, 383, 403-410.	1.2	0

#	Article	IF	CITATIONS
109	Calculation of rf magnetic permeability of nearly ferroelectric superconductors in a parallel field. Physica C: Superconductivity and Its Applications, 2007, 453, 70-75.	1.2	0
110	Electromagnetic Properties of a Nearly Ferroelectric Superconductor in Layered Structure. Ferroelectrics, 2009, 381, 41-50.	0.6	0
111	Investigation of resonant peaks in the symmetric and asymmetric multilayer narrowband transmission filters. Applied Physics A: Materials Science and Processing, 2011, 104, 895-898.	2.3	0
112	Frequency Response of a Ferroelectric Material in Double-Negative Region. IEEE Photonics Journal, 2014, 6, 1-11.	2.0	0
113	Tunable multichannel filter in a semiconductor photonic quantum well structure. , 2014, , .		0
114	Transmission Properties in Lossy Single-Negative Materials. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	0
115	Near-Infrared Multichannel Filter in a Finite Semiconductor Metamaterial Photonic Crystal. IEEE Photonics Journal, 2016, 8, 1-9	2.0	0