
Jungjin Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11279294/publications.pdf Version: 2024-02-01

Ιμναμν Υρον

#	Article	IF	CITATIONS
1	Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy and Environmental Science, 2017, 10, 337-345.	30.8	391
2	lsothermally crystallized perovskites at room-temperature. Energy and Environmental Science, 2020, 13, 3412-3422.	30.8	153
3	Moth-Eye TiO ₂ Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells. Small, 2016, 12, 2443-2449.	10.0	142
4	Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 5395-5401.	4.6	141
5	Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy and Environmental Science, 2019, 12, 3182-3191.	30.8	136
6	Localized Electron Density Engineering for Stabilized B-γ CsSnl ₃ -Based Perovskite Solar Cells with Efficiencies >10%. ACS Energy Letters, 0, , 1480-1489.	17.4	125
7	Ambient-Air-Stable Lead-Free CsSnI ₃ Solar Cells with Greater than 7.5% Efficiency. Journal of the American Chemical Society, 2021, 143, 4319-4328.	13.7	105
8	Highâ€Performance Solutionâ€Processed Doubleâ€Walled Carbon Nanotube Transparent Electrode for Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901204.	19.5	101
9	Highly Reproducible Largeâ€Area Perovskite Solar Cell Fabrication via Continuous Megasonic Spray Coating of CH ₃ NH ₃ PbI ₃ . Small, 2019, 15, e1804005.	10.0	99
10	Carbon-sandwiched perovskite solar cell. Journal of Materials Chemistry A, 2018, 6, 1382-1389.	10.3	98
11	28.3%-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell. Nano Energy, 2021, 84, 105934.	16.0	93
12	Cost-Effective High-Performance Charge-Carrier-Transport-Layer-Free Perovskite Solar Cells Achieved by Suppressing Ion Migration. ACS Energy Letters, 2021, 6, 3044-3052.	17.4	65
13	Foldable Perovskite Solar Cells Using Carbon Nanotubeâ€Embedded Ultrathin Polyimide Conductor. Advanced Science, 2021, 8, 2004092.	11.2	60
14	Rational Core–Shell Design of Open Air Low Temperature In Situ Processable CsPbI ₃ Quasiâ€Nanocrystals for Stabilized pâ€iâ€n Solar Cells. Advanced Energy Materials, 2019, 9, 1901787.	19.5	53
15	Selfâ€Powered Red/UV Narrowband Photodetector by Unbalanced Charge Carrier Transport Strategy. Advanced Functional Materials, 2021, 31, 2007016.	14.9	44
16	Precise Morphology Control and Continuous Fabrication of Perovskite Solar Cells Using Droplet-Controllable Electrospray Coating System. ACS Applied Materials & Interfaces, 2017, 9, 7879-7884.	8.0	43
17	Electro-spray deposition of a mesoporous TiO ₂ charge collection layer: toward large scale and continuous production of high efficiency perovskite solar cells. Nanoscale, 2015, 7, 20725-20733.	5.6	36
18	Influence of TiO ₂ Particle Size on Dye-Sensitized Solar Cells Employing an Organic Sensitizer and a Cobalt(III/II) Redox Electrolyte. Journal of Physical Chemistry C, 2018, 122, 7051-7060.	3.1	35

Jungjin Yoon

#	Article	lF	CITATIONS
19	Roomâ€Temperature Vapor Deposition of Cobalt Nitride Nanofilms for Mesoscopic and Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703114.	19.5	29
20	Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient Ruddlesden–Popper perovskite solar cells. Energy and Environmental Science, 2021, 14, 4915-4925.	30.8	24
21	Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society Reviews, 2021, 50, 12915-12984.	38.1	15
22	Controlled Removal of Surfactants from Doubleâ€Walled Carbon Nanotubes for Stronger pâ€Doping Effect and Its Demonstration in Perovskite Solar Cells. Small Methods, 2021, 5, e2100080.	8.6	11
23	Bioinspired liquid-repelling sealing films for flexible perovskite solar cells. Materials Today Energy, 2021, 20, 100622.	4.7	5
24	Homogenization of Optical Field in Nanocrystal-Embedded Perovskite Composites. ACS Energy Letters, 2022, 7, 1657-1671.	17.4	4
25	Perovskite Solar Cells: Moth-Eye TiO ₂ Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells (Small 18/2016), Small, 2016, 12, 2530-2530.	10.0	1