Xizeng Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11278512/publications.pdf

Version: 2024-02-01

331259 344852 10,787 37 21 36 h-index citations g-index papers 39 39 39 16160 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 2011, 39, W316-W322.	6.5	3,897
2	Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21, 3787-3793.	1.8	3,124
3	dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 2012, 40, W445-W451.	6.5	1,554
4	KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Research, 2006, 34, W720-W724.	6.5	682
5	Genes and (Common) Pathways Underlying Drug Addiction. PLoS Computational Biology, 2008, 4, e2.	1.5	210
6	DOOR 2.0: presenting operons and their functions through dynamic and integrated views. Nucleic Acids Research, 2014, 42, D654-D659.	6.5	171
7	Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Science Translational Medicine, 2019, 11 , .	5. 8	161
8	Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. Npj Genomic Medicine, 2017, 2, .	1.7	120
9	Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut, 2020, 69, 18-31.	6.1	94
10	Multi-region exome sequencing reveals genomic evolution from preneoplasia to lung adenocarcinoma. Nature Communications, 2019, 10, 2978.	5.8	91
11	Combined Analysis of Antigen Presentation and T-cell Recognition Reveals Restricted Immune Responses in Melanoma. Cancer Discovery, 2018, 8, 1366-1375.	7.7	80
12	Molecular Analysis of Clinically Defined Subsets of High-Grade Serous Ovarian Cancer. Cell Reports, 2020, 31, 107502.	2.9	69
13	Comprehensive characterization of the genomic alterations in human gastric cancer. International Journal of Cancer, 2015, 137, 86-95.	2.3	67
14	Blocking immunosuppressive neutrophils deters pY696-EZH2–driven brain metastases. Science Translational Medicine, 2020, 12, .	5.8	64
15	Telomere dysfunction activates YAP1 to drive tissue inflammation. Nature Communications, 2020, 11 , 4766.	5.8	42
16	The percentage of bacterial genes on leading versus lagging strands is influenced by multiple balancing forces. Nucleic Acids Research, 2012, 40, 8210-8218.	6. 5	41
17	Revisiting operons: an analysis of the landscape of transcriptional units in E. coli. BMC Bioinformatics, 2015, 16, 356.	1.2	39
18	Molecular analysis of early rice stamen development using organ-specific gene expression profiling. Plant Molecular Biology, 2006, 61, 845-861.	2.0	30

#	Article	lF	CITATIONS
19	DMINDA: an integrated web server for DNA motif identification and analyses. Nucleic Acids Research, 2014, 42, W12-W19.	6.5	30
20	Multi-omic molecular profiling reveals potentially targetable abnormalities shared across multiple histologies of brain metastasis. Acta Neuropathologica, 2021, 141, 303-321.	3.9	30
21	Hypoxia and miscoupling between reduced energy efficiency and signaling to cell proliferation drive cancer to grow increasingly faster. Journal of Molecular Cell Biology, 2012, 4, 174-176.	1.5	23
22	New Insights into Clostridia Through Comparative Analyses of Their 40 Genomes. Bioenergy Research, 2014, 7, 1481-1492.	2.2	16
23	PRDM16s transforms megakaryocyte-erythroid progenitors into myeloid leukemia–initiating cells. Blood, 2019, 134, 614-625.	0.6	16
24	The histologic phenotype of lung cancers is associated with transcriptomic features rather than genomic characteristics. Nature Communications, 2021, 12, 7081.	5.8	16
25	Isolation and analysis of differentially expressed genes in dominant genic male sterility (DGMS) Brassica napus L. using subtractive PCR and cDNA microarray. Plant Science, 2007, 172, 204-211.	1.7	15
26	Spatially resolved analyses link genomic and immune diversity and reveal unfavorable neutrophil activation in melanoma. Nature Communications, 2020, 11, 1839.	5.8	15
27	Computational prediction of the osmoregulation network in Synechococcus sp. WH8102. BMC Genomics, 2010, 11, 291.	1.2	14
28	Enhancer reprogramming in PRC2-deficient malignant peripheral nerve sheath tumors induces a targetable de-differentiated state. Acta Neuropathologica, 2021, 142, 565-590.	3.9	12
29	Integration of sequence-similarity and functional association information can overcome intrinsic problems in orthology mapping across bacterial genomes. Nucleic Acids Research, 2011, 39, e150-e150.	6.5	11
30	Variants with a low allele frequency detected in genomic DNA affect the accuracy of mutation detection in cellâ€free DNA by nextâ€generation sequencing. Cancer, 2018, 124, 1061-1069.	2.0	11
31	Genome-Scale Identification of Cell-Wall-Related Genes in Switchgrass through Comparative Genomics and Computational Analyses of Transcriptomic Data. Bioenergy Research, 2016, 9, 172-180.	2.2	10
32	SEAS: A System for SEED-Based Pathway Enrichment Analysis. PLoS ONE, 2011, 6, e22556.	1.1	8
33	Experimental models of undifferentiated pleomorphic sarcoma and malignant peripheral nerve sheath tumor. Laboratory Investigation, 2022, 102, 658-666.	1.7	7
34	CINPER: An Interactive Web System for Pathway Prediction for Prokaryotes. PLoS ONE, 2012, 7, e51252.	1.1	5
35	Understanding the commonalities and differences in genomic organizations across closely related bacteria from an energy perspective. Science China Life Sciences, 2014, 57, 1121-1130.	2.3	4
36	A Cryptic BCR-PDGFRB Fusion Resulting in a Chronic Myeloid Neoplasm With Monocytosis and Eosinophilia: A Novel Finding With Treatment Implications. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 1300-1304.	2.3	4

3

#	Article	IF	CITATIONS
37	Somatic Mutations in Circulating Cell-Free DNA and Risk for Hepatocellular Carcinoma in Hispanics. International Journal of Molecular Sciences, 2021, 22, 7411.	1.8	3