Sara Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11277905/publications.pdf

Version: 2024-02-01

56	5,353	33	57
papers	citations	h-index	g-index
63	63	63	10366 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	High-throughput discovery of novel developmental phenotypes. Nature, 2016, 537, 508-514.	27.8	1,001
2	Overexpression of Fto leads to increased food intake and results in obesity. Nature Genetics, 2010, 42, 1086-1092.	21.4	612
3	A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biology, 2013, 14, R82.	9.6	403
4	Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nature Genetics, 2017, 49, 1231-1238.	21.4	216
5	Prevalence of sexual dimorphism in mammalian phenotypic traits. Nature Communications, 2017, 8, 15475.	12.8	200
6	A gene-driven ENU-based approach to generating an allelic series in any gene. Mammalian Genome, 2004, 15, 585-591.	2.2	148
7	ENU Mutagenesis, a Way Forward to Understand Gene Function. Annual Review of Genomics and Human Genetics, 2008, 9, 49-69.	6.2	143
8	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	21.4	137
9	Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mammalian Genome, 2012, 23, 600-610.	2.2	133
10	Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination. PLoS Biology, 2009, 7, e1000196.	5.6	130
11	Adult Onset Global Loss of the Fto Gene Alters Body Composition and Metabolism in the Mouse. PLoS Genetics, 2013, 9, e1003166.	3.5	129
12	Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. Journal of Neuroscience Methods, 2018, 300, 37-47.	2.5	128
13	Gadd $45\hat{l}^3$ and Map3k4 Interactions Regulate Mouse Testis Determination via p38 MAPK-Mediated Control of Sry Expression. Developmental Cell, 2012, 23, 1020-1031.	7. O	122
14	A Mutation in the Mitochondrial Fission Gene Dnm1l Leads to Cardiomyopathy. PLoS Genetics, 2010, 6, e1001000.	3. 5	119
15	A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nature Communications, 2017, 8, 886.	12.8	116
16	Dominant \hat{I}^2 -catenin mutations cause intellectual disability with recognizable syndromic features. Journal of Clinical Investigation, 2014, 124, 1468-1482.	8.2	110
17	Analysis of Individual Mouse Activity in Group Housed Animals of Different Inbred Strains using a Novel Automated Home Cage Analysis System. Frontiers in Behavioral Neuroscience, 2016, 10, 106.	2.0	87
18	Sfrp1 and Sfrp2 are required for normal male sexual development in mice. Developmental Biology, 2009, 326, 273-284.	2.0	84

#	Article	IF	CITATIONS
19	Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nature Communications, 2016, 7, 12444.	12.8	79
20	High-throughput mouse phenomics for characterizing mammalian gene function. Nature Reviews Genetics, 2018, 19, 357-370.	16.3	78
21	EuroPhenome: a repository for high-throughput mouse phenotyping data. Nucleic Acids Research, 2010, 38, D577-D585.	14.5	75
22	Applying the ARRIVE Guidelines to an In Vivo Database. PLoS Biology, 2015, 13, e1002151.	5.6	75
23	The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis. Cell, 2015, 162, 607-621.	28.9	74
24	Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biology, 2018, 16, 70.	3.8	74
25	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	12.8	64
26	ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5474-5479.	7.1	62
27	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	21.4	60
28	Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nature Communications, 2018, 9, 288.	12.8	59
29	Minor Abnormalities of Testis Development in Mice Lacking the Gene Encoding the MAPK Signalling Component, MAP3K1. PLoS ONE, 2011, 6, e19572.	2.5	55
30	Biallelic Variants in OTUD6B Cause an Intellectual Disability Syndrome Associated with Seizures and Dysmorphic Features. American Journal of Human Genetics, 2017, 100, 676-688.	6.2	54
31	Spectrum of ENU-induced mutations in phenotype-driven and gene-driven screens in the mouse. Environmental and Molecular Mutagenesis, 2007, 48, 124-142.	2.2	48
32	An ENU-induced mutation in the $<$ i>Ankrd11 $<$ /i> gene results in an osteopenia-like phenotype in the mouse mutant Yoda. Physiological Genomics, 2008, 32, 311-321.	2.3	48
33	Loss of p300 and CBP disrupts histone acetylation at the mouse Sry promoter and causes XY gonadal sex reversal. Human Molecular Genetics, 2018, 27, 190-198.	2.9	39
34	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	4.4	37
35	A mutation in Nischarin causes otitis media via LIMK1 and NF-κB pathways. PLoS Genetics, 2017, 13, e1006969.	3.5	36
36	Early motor deficits in mouse disease models are reliably uncovered using an automated home cage wheel-running system: a cross-laboratory validation. DMM Disease Models and Mechanisms, 2014, 7, 397-407.	2.4	33

3

#	Article	IF	Citations
37	Pharmacological Inhibition of FTO. PLoS ONE, 2015, 10, e0121829.	2.5	33
38	The Deep Genome Project. Genome Biology, 2020, 21, 18.	8.8	30
39	A Novel Mouse Fgfr2 Mutant, Hobbyhorse (hob), Exhibits Complete XY Gonadal Sex Reversal. PLoS ONE, 2014, 9, e100447.	2.5	26
40	Transgenic expression of Map3k4 rescues T-associated sex reversal (Tas) in mice. Human Molecular Genetics, 2014, 23, 3035-3044.	2.9	24
41	A Cross-Laboratory Investigation of Timing Endophenotypes in Mouse Behavior. Timing and Time Perception, 2014, 2, 35-50.	0.6	22
42	ENU Mutagenesis Reveals a Novel Phenotype of Reduced Limb Strength in Mice Lacking Fibrillin 2. PLoS ONE, 2010, 5, e9137.	2.5	19
43	Genetic Analyses Reveal Functions for MAP2K3 and MAP2K6 in Mouse Testis Determination1. Biology of Reproduction, 2016, 94, 103.	2.7	18
44	Comprehensive phenotypic analysis of the Dp1Tyb mouse strain reveals a broad range of Down syndrome-related phenotypes. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	17
45	Forward genetics identifies a novel sleep mutant with sleep state inertia and REM sleep deficits. Science Advances, 2020, 6, eabb3567.	10.3	15
46	Phenotyping in Mice Using Continuous Home Cage Monitoring and Ultrasonic Vocalization Recordings. Current Protocols in Mouse Biology, 2020, 10, e80.	1.2	11
47	¹ H NMR Metabolic Profiling of Plasma Reveals Additional Phenotypes in Knockout Mouse Models. Journal of Proteome Research, 2015, 14, 2036-2045.	3.7	10
48	A novel knockout mouse for the small EDRK-rich factor 2 (Serf2) showing developmental and other deficits. Mammalian Genome, 2021, 32, 94-103.	2.2	10
49	Male mice lacking ADAMTS-16 are fertile but exhibit testes of reduced weight. Scientific Reports, 2019, 9, 17195.	3.3	8
50	LAMA: automated image analysis for the developmental phenotyping of mouse embryos. Development (Cambridge), 2021, 148, .	2.5	7
51	Protection Against XY Gonadal Sex Reversal by a Variant Region on Mouse Chromosome 13. Genetics, 2020, 214, 467-477.	2.9	6
52	Gadd45g is required for timely Sry expression independently of RSPO1 activity. Reproduction, 2022, 163, 333-340.	2.6	5
53	Identifying genetic determinants of inflammatory pain in mice using a large-scale gene-targeted screen. Pain, 2022, 163, 1139-1157.	4.2	4
54	Characterisation and use of a functional Gadd45g bacterial artificial chromosome. Scientific Reports, 2018, 8, 17318.	3.3	2

SARA WELLS

#	Article	IF	CITATION
55	Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. Scientific Reports, 2020, 10, 437.	3.3	2
56	Drug safety Africa: An overview of safety pharmacology & Drug safety Africa: Journal of Pharmacological and Toxicological Methods, 2019, 98, 106579.	0.7	1