David E Stallknecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1127789/publications.pdf

Version: 2024-02-01

100 papers 2,672 citations

236925 25 h-index 214800 47 g-index

102 all docs

102 docs citations

102 times ranked 2298 citing authors

#	Article	IF	CITATIONS
1	Evidence for interannual persistence of infectious influenza A viruses in Alaska wetlands. Science of the Total Environment, 2022, 803, 150078.	8.0	17
2	Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. Journal of Wildlife Management, 2022, 86, .	1.8	43
3	Naturally Acquired Antibodies to Influenza A Virus in Fall-Migrating North American Mallards. Veterinary Sciences, 2022, 9, 214.	1.7	2
4	A lesser scaup (<i>Aythya affinis</i>) naturally infected with Eurasian 2.3.4.4 highly pathogenic H5N1 avian influenza virus: Movement ecology and host factors. Transboundary and Emerging Diseases, 2022, 69, .	3.0	9
5	The Effect of Maternal Antibodies on Clinical Response to Infection with Epizootic Hemorrhagic Disease Virus in White-Tailed Deer (Odocoileus virginianus) Fawns. Journal of Wildlife Diseases, 2021, 57, 189-193.	0.8	5
6	Spatial Analysis of the 2017 Outbreak of Hemorrhagic Disease and Physiographic Region in the Eastern United States. Viruses, 2021, 13, 550.	3.3	8
7	Lowâ€pathogenicity influenza viruses replicate differently in laughing gulls and mallards. Influenza and Other Respiratory Viruses, 2021, 15, 701-706.	3.4	2
8	Influenza A Viruses in Whistling Ducks (Subfamily Dendrocygninae). Viruses, 2021, 13, 192.	3.3	O
9	Coding-Complete Genome Sequence of <i>Avian orthoavulavirus 16</i> , Isolated from Emperor Goose (Anser canagicus) Feces, Alaska, USA. Microbiology Resource Announcements, 2021, 10, .	0.6	O
10	Randomly primed, strand-switching, MinION-based sequencing for the detection and characterization of cultured RNA viruses. Journal of Veterinary Diagnostic Investigation, 2021, 33, 202-215.	1.1	18
11	Field-based method for assessing duration of infectivity for influenza A viruses in the environment. Journal of Virological Methods, 2020, 277, 113818.	2.1	6
12	EXPERIMENTAL INFECTIONS AND SEROLOGY INDICATE THAT AMERICAN WHITE IBIS (EUDOCIUMUS ALBUS) ARE COMPETENT RESERVOIRS FOR TYPE A INFLUENZA VIRUS. Journal of Wildlife Diseases, 2020, 56, 530.	0.8	3
13	SUSCEPTIBILITY OF LAUGHING GULLS (LEUCOPHAEUS ATRICILLA) AND MALLARDS (ANAS PLATYRHYNCHOS) TO RUDDY TURNSTONE (ARENARIA INTERPRES MORINELLA) ORIGIN TYPE A INFLUENZA VIRUSES. Journal of Wildlife Diseases, 2020, 56, 167.	0.8	1
14	Influenza A Viruses in Ruddy Turnstones (Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses, 2020, 12, 1205.	3.3	6
15	Influenza A viruses remain infectious for more than seven months in northern wetlands of North America. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201680.	2.6	33
16	The Genome Sequence of an H6N5 Influenza A Virus Strain Isolated from a Northern Pintail (Anas) Tj ETQq0 0 0 Microbiology Resource Announcements, 2020, 9, .	rgBT /Ovei 0.6	rlock 10 Tf 50 2
17	An Embryonated Egg Transmission Model for Epizootic Hemorrhagic Disease Virus. Vector-Borne and Zoonotic Diseases, 2020, 20, 728-730.	1.5	1
18	The role of drought as a determinant of hemorrhagic disease in the eastern United States. Global Change Biology, 2020, 26, 3799-3808.	9.5	9

#	Article	IF	Citations
19	Phylogeography and Antigenic Diversity of Low-Pathogenic Avian Influenza H13 and H16 Viruses. Journal of Virology, 2020, 94, .	3.4	16
20	SUSCEPTIBILITY OF LAUGHING GULLS () AND MALLARDS () TO RUDDY TURNSTONE () ORIGIN TYPE A INFLUENZA VIRUSES. Journal of Wildlife Diseases, 2020, 56, 167-174.	0.8	0
21	LIMITED DETECTION OF ANTIBODIES TO CLADE 2.3.4.4 A/GOOSE/GUANGDONG/1/1996 LINEAGE HIGHLY PATHOGENIC H5 AVIAN INFLUENZA VIRUS IN NORTH AMERICAN WATERFOWL. Journal of Wildlife Diseases, 2020, 56, 47-57.	0.8	1
22	Improved detection of influenza A virus from blueâ€winged teals by sequencing directly from swab material. Ecology and Evolution, 2019, 9, 6534-6546.	1.9	18
23	Complete Genome Sequence of a 2016 Bluetongue Virus Serotype 3 Isolate from Louisiana. Microbiology Resource Announcements, 2019, 8, .	0.6	0
24	Emperor geese (<i>Anser canagicus</i>) are exposed to a diversity of influenza A viruses, are infected during the nonâ€breeding period and contribute to intercontinental viral dispersal. Transboundary and Emerging Diseases, 2019, 66, 1958-1970.	3.0	7
25	EHDV-2 Infection Prevalence Varies in Culicoides sonorensis after Feeding on Infected White-Tailed Deer over the Course of Viremia. Viruses, 2019, 11, 371.	3.3	10
26	GENETIC RELATEDNESS OF EPIZOOTIC HEMORRHAGIC DISEASE VIRUS SEROTYPE 2 FROM 2012 OUTBREAK IN THE USA. Journal of Wildlife Diseases, 2019, 55, 363.	0.8	3
27	EXPERIMENTAL INFECTION OF WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS) WITH BLUETONGUE VIRUS SEROTYPE 3. Journal of Wildlife Diseases, 2019, 55, 627.	0.8	8
28	Evaluation of 2012 US EHDV-2 outbreak isolates for genetic determinants of cattle infection. Journal of General Virology, 2019, 100, 556-567.	2.9	4
29	Lessons learned from research and surveillance directed at highly pathogenic influenza A viruses in wild birds inhabiting North America. Virology, 2018, 518, 55-63.	2.4	21
30	NEUTRALIZING ANTIBODIES TO TYPE A INFLUENZA VIRUSES IN SHOREBIRDS AT DELAWARE BAY, NEW JERSEY, USA. Journal of Wildlife Diseases, 2018, 54, 708-715.	0.8	3
31	Heterosubtypic immunity increases infectious dose required to infect Mallard ducks with Influenza A virus. PLoS ONE, 2018, 13, e0196394.	2.5	7
32	Introduction of Eurasian-Origin Influenza A(H8N4) Virus into North America by Migratory Birds. Emerging Infectious Diseases, 2018, 24, 1950-1953.	4.3	33
33	Genetic Evidence Supports Sporadic and Independent Introductions of Subtype H5 Low-Pathogenic Avian Influenza A Viruses from Wild Birds to Domestic Poultry in North America. Journal of Virology, 2018, 92, .	3.4	23
34	Influenza A virus recovery, diversity, and intercontinental exchange: A multi-year assessment of wild bird sampling at Izembek National Wildlife Refuge, Alaska. PLoS ONE, 2018, 13, e0195327.	2.5	23
35	Influenza A Prevalence and Subtype Diversity in Migrating Teal Sampled Along the United States Gulf Coast. Avian Diseases, 2018, 63, 165.	1.0	8
36	Prevalence of Influenza A Viruses in Ducks Sampled in Northwestern Minnesota and Evidence for Predominance of H3N8 and H4N6 Subtypes in Mallards, 2007–2016. Avian Diseases, 2018, 63, 126.	1.0	9

#	Article	IF	CITATIONS
37	Are Microneutralization and Hemagglutination Inhibition Assays Comparable? Serological Results from Influenza Experimentally Infected Mallard Ducks. Avian Diseases, 2018, 63, 138.	1.0	3
38	Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus. Journal of Virology, 2017, 91, .	3.4	27
39	Serologic Detection of Subtype-specific Antibodies to Influenza A Viruses in Southern Sea Otters (Enhydra lutris nereis). Journal of Wildlife Diseases, 2017, 53, 906-910.	0.8	12
40	VIRUS ISOLATION AND MOLECULAR DETECTION OF BLUETONGUE AND EPIZOOTIC HEMORRHAGIC DISEASE VIRUSES FROM NATURALLY INFECTED WHITE-TAILED DEER (<i>ODOCOILEUS VIRGINIANUS</i>). Journal of Wildlife Diseases, 2017, 53, 843-849.	0.8	5
41	Assessment of contemporary genetic diversity and inter-taxa/inter-region exchange of avian paramyxovirus serotype 1 in wild birds sampled in North America. Virology Journal, 2017, 14, 43.	3.4	17
42	The First 10 Years (2006–15) of Epizootic Hemorrhagic Disease Virus Serotype 6 in the USA. Journal of Wildlife Diseases, 2017, 53, 901-905.	0.8	24
43	Development of an influenza virus protein microarray to measure the humoral response to influenza virus infection in mallards. Emerging Microbes and Infections, 2017, 6, 1-9.	6.5	19
44	Influenza A virus: sampling of the unique shorebird habitat at Delaware Bay, USA. Royal Society Open Science, 2017, 4, 171420.	2.4	17
45	Maintenance of influenza A viruses and antibody response in mallards (Anas platyrhynchos) sampled during the non-breeding season in Alaska. PLoS ONE, 2017, 12, e0183505.	2.5	10
46	Adaptive Heterosubtypic Immunity to Low Pathogenic Avian Influenza Viruses in Experimentally Infected Mallards. PLoS ONE, 2017, 12, e0170335.	2.5	15
47	Competition between influenza A virus subtypes through heterosubtypic immunity modulates re-infection and antibody dynamics in the mallard duck. PLoS Pathogens, 2017, 13, e1006419.	4.7	53
48	Genome Sequence of a Novel H14N7 Subtype Influenza A Virus Isolated from a Blue-Winged Teal () Tj ETQq0 0 C) rgBT /Ov	erlqck 10 Tf 5
49	Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals. MSphere, 2016, 1 , .	2.9	56
50	Antibodies to Influenza A Viruses in Gulls at Delaware Bay, USA. Avian Diseases, 2016, 60, 341-345.	1.0	9
51	Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards. Journal of Virology, 2016, 90, 9967-9982.	3.4	96
52	Antibodies to Influenza A Viruses in Wintering Snow Geese (<i>Chen caerulescens</i>) in Texas. Avian Diseases, 2016, 60, 337-340.	1.0	14
53	Evidence for wild waterfowl origin of H7N3 influenza A virus detected in captive-reared New Jersey pheasants. Archives of Virology, 2016, 161, 2519-2526.	2.1	6
54	The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9033-9038.	7.1	62

#	Article	IF	CITATIONS
55	Reply to Ramey et al.: Let time be the arbiter. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6553-E6554.	7.1	1
56	Surveillance for Eurasian-origin and intercontinental reassortant highly pathogenic influenza A viruses in Alaska, spring and summer 2015. Virology Journal, 2016, 13, 55.	3.4	11
57	Evidence for the exchange of blood parasites between North America and the Neotropics in blue-winged teal (Anas discors). Parasitology Research, 2016, 115, 3923-3939.	1.6	19
58	A Multiplex Label-Free Approach to Avian Influenza Surveillance and Serology. PLoS ONE, 2015, 10, e0134484.	2.5	19
59	H7N9 influenza A virus in turkeys in Minnesota. Journal of General Virology, 2015, 96, 269-276.	2.9	12
60	Influenza A Virus on Oceanic Islands: Host and Viral Diversity in Seabirds in the Western Indian Ocean. PLoS Pathogens, 2015, 11, e1004925.	4.7	20
61	Subtype-specific influenza A virus antibodies in Canada geese (Branta canadensis). Veterinary Microbiology, 2015, 177, 296-301.	1.9	2
62	Effect of Temperature on Replication of Epizootic Hemorrhagic Disease Viruses in <i>Culicoides sonorensis </i> i>(Diptera: Ceratopogonidae) Journal of Medical Entomology , 2015 , 52 , 1050-1059 .	1.8	19
63	Transmission and Epidemiology of Bluetongue and Epizootic Hemorrhagic Disease in North America: Current Perspectives, Research Gaps, and Future Directions. Vector-Borne and Zoonotic Diseases, 2015, 15, 348-363.	1.5	101
64	Sampling of Sea Ducks for Influenza A Viruses in Alaska during Winter Provides Lack of Evidence for Epidemiologic Peak of Infection. Journal of Wildlife Diseases, 2015, 51, 938.	0.8	6
65	APPARENT INCREASE OF REPORTED HEMORRHAGIC DISEASE IN THE MIDWESTERN AND NORTHEASTERN USA. Journal of Wildlife Diseases, 2015, 51, 348-361.	0.8	40
66	Evolutionary genetics and vector adaptation of recombinant viruses of the western equine encephalitis antigenic complex provides new insights into alphavirus diversity and host switching. Virology, 2015, 474, 154-162.	2.4	23
67	Genetic characterization of epizootic hemorrhagic disease virus strains isolated from cattle in Israel. Journal of General Virology, 2015, 96, 1400-1410.	2.9	9
68	Genomic Characterization of H14 Subtype Influenza A Viruses in New World Waterfowl and Experimental Infectivity in Mallards (Anas platyrhynchos). PLoS ONE, 2014, 9, e95620.	2.5	23
69	Adaptive Evolution and Environmental Durability Jointly Structure Phylodynamic Patterns in Avian Influenza Viruses. PLoS Biology, 2014, 12, e1001931.	5.6	36
70	Trade-offs between and within scales: environmental persistence and within-host fitness of avian influenza viruses. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133051.	2.6	30
71	Abiotic Factors Affecting the Persistence of Avian Influenza Virus in Surface Waters of Waterfowl Habitats. Applied and Environmental Microbiology, 2014, 80, 2910-2917.	3.1	49
72	Subtype diversity and reassortment potential for coâ€eirculating avian influenza viruses at a diversity hot spot. Journal of Animal Ecology, 2014, 83, 566-575.	2.8	8

#	Article	IF	CITATIONS
73	Duck Hunters' Perceptions of Risk for Avian Influenza, Georgia, USA. Emerging Infectious Diseases, 2010, 16, 1279-1281.	4.3	12
74	Avian Influenza Virus in Aquatic Habitats: What Do We Need to Learn?. Avian Diseases, 2010, 54, 461-465.	1.0	90
75	The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics. PLoS Computational Biology, 2009, 5, e1000346.	3.2	197
76	Persistence of H5 and H7 Avian Influenza Viruses in Water. Avian Diseases, 2007, 51, 285-289.	1.0	276
77	Susceptibility of North American Ducks and Gulls to H5N1 Highly Pathogenic Avian Influenza Viruses. Emerging Infectious Diseases, 2006, 12, 1663-1670.	4.3	257
78	FACT SHEET. Biodiversity, 2006, 7, 2-2.	1.1	0
79	Effect of strain and serotype of vesicular stomatitis virus on viral shedding, vesicular lesion development, and contact transmission in pigs. American Journal of Veterinary Research, 2004, 65, 1233-1239.	0.6	17
80	Attempted Transmission of Ehrlichia chaffeensis among White-tailed Deer by Amblyomma maculatum. Journal of Wildlife Diseases, 2000, 36, 592-594.	0.8	7
81	An Epizootic of Hemorrhagic Disease in White-tailed Deer in Missouri. Journal of Wildlife Diseases, 2000, 36, 588-591.	0.8	26
82	VSVâ€NJ on Ossabaw Island, Georgia: The Truth Is Out There. Annals of the New York Academy of Sciences, 2000, 916, 431-436.	3.8	10
83	Novel <i>Ehrlichia</i> Organism (Rickettsiales: Ehrlichieae) in White-Tailed Deer Associated with Lone Star Tick (Acari: Ixodidae) Parasitism. Journal of Medical Entomology, 1999, 36, 190-194.	1.8	20
84	SUSCEPTIBILITY OF RED AND GRAY FOXES TO INFECTION BY EHRLICHIA CHAFFEENSIS. Journal of Wildlife Diseases, 1999, 35, 696-702.	0.8	29
85	Evaluation of Two Oral Baiting Systems for Wild Rodents. Journal of Wildlife Diseases, 1998, 34, 369-372.	0.8	2
86	IN VITRO REPLICATION OF EPIZOOTIC HEMORRHAGIC DISEASE AND BLUETONGUE VIRUSES IN WHITE-TAILED DEER PERIPHERAL BLOOD MONONUCLEAR CELLS AND VIRUS-CELL ASSOCIATION DURING IN VIVO INFECTIONS. Journal of Wildlife Diseases, 1997, 33, 574-583.	0.8	17
87	HOST DEFENSE RESPONSES ASSOCIATED WITH EXPERIMENTAL HEMORRHAGIC DISEASE IN WHITE-TAILED DEER. Journal of Wildlife Diseases, 1997, 33, 584-599.	0.8	55
88	Experimental Vesicular Stomatitis in Swine: Effects of Route of Inoculation and Steroid Treatment. Journal of Veterinary Diagnostic Investigation, 1997, 9, 136-142.	1.1	37
89	MONITORING OF CULICOIDES SPP. AT A SITE ENZOOTIC FOR HEMORRHAGIC DISEASE IN WHITE-TAILED DEER IN GEORGIA, USA. Journal of Wildlife Diseases, 1996, 32, 627-642.	0.8	38
90	Culicoides (Diptera: Ceratopogonidae) Collected During Epizootics of Hemorrhagic Disease among Captive White-tailed Deer. Journal of Medical Entomology, 1996, 33, 507-510.	1.8	52

#	Article	IF	CITATION
91	Experimental Infection of Swine with a Sandfly (Lutzomyia Shannoni) Isolate of Vesicular Stomatitis Virus, New Jersey Serotype. Journal of Veterinary Diagnostic Investigation, 1996, 8, 105-108.	1.1	23
92	Prevalence of Exposure to Eastern Equine Encephalomyelitis Virus in Domestic and Feral Swine in Georgia. Journal of Veterinary Diagnostic Investigation, 1996, 8, 481-484.	1.1	21
93	Hemorrhagic Disease in White-tailed Deer in Texas: A Case for Enzootic Stability. Journal of Wildlife Diseases, 1996, 32, 695-700.	0.8	44
94	Low Prevalence of Antibodies to Bluetongue and Epizootic Hemorrhagic Disease Viruses in Dogs from Southern Georgia. Journal of Veterinary Diagnostic Investigation, 1995, 7, 393-394.	1.1	12
95	EPIZOOTIC HEMORRHAGIC DISEASE VIRUS AND BLUETONGUE VIRUS SEROTYPE DISTRIBUTION IN WHITE-TAILED DEER IN GEORGIA. Journal of Wildlife Diseases, 1995, 31, 331-338.	0.8	42
96	Isolation and Culture of Large Vessel Endothelium from White-Tailed Deer (Odocoileus Virginianus). Journal of Veterinary Diagnostic Investigation, 1995, 7, 137-142.	1.1	4
97	FERAL SWINE AS A POTENTIAL AMPLIFYING HOST FOR VESICULAR STOMATITIS VIRUS NEW JERSEY SEROTYPE ON OSSABAW ISLAND, GEORGIA. Journal of Wildlife Diseases, 1993, 29, 377-383.	0.8	15
98	Effect of Forest Type on the Distribution of Lutzomyia shannoni (Diptera: Psyehodidae) and Vesicular Stomatitis Virus on Ossabaw Island, Georgia. Journal of Medical Entomology, 1993, 30, 555-560.	1.8	22
99	Antibodies to Bluetongue and Epizootic Hemorrhagic Disease Viruses from White-Tailed Deer Blood Samples Dried on Paper Strips. Journal of Wildlife Diseases, 1992, 28, 306-310.	0.8	14
100	Antibodies to Bluetongue and Epizootic Hemorrhagic Disease Viruses in a Barrier Island White-tailed Deer Population, Journal of Wildlife Diseases, 1991, 27, 668-674.	0.8	22