List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1127565/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Learning-based line impedance estimation for partially observable distribution systems. International Journal of Electrical Power and Energy Systems, 2022, 137, 107803.	5.5	4
2	Structural deformation and its pore-fracture system response of the Wufeng-Longmaxi shale in the Northeast Chongqing area, using FE-SEM, gas adsorption, and SAXS. Journal of Petroleum Science and Engineering, 2022, 209, 109877.	4.2	10
3	Effects of Rapid Igneous Intrusion Heating on the Geochemistry, Petrography, and Microcrystalline Structure of Coals from Huainan, China. ACS Omega, 2022, 7, 15439-15450.	3.5	7
4	Characteristics and Controlling Factors of Nanopores of the Niutitang Formation Shale from Jiumen Outcrop, Guizhou Province. Journal of Nanoscience and Nanotechnology, 2021, 21, 284-295.	0.9	3
5	Molecular Structure Evaluation and Image-Guided Atomistic Representation of Marine Kerogen from Longmaxi Shale. Energy & Fuels, 2021, 35, 7981-7992.	5.1	8
6	The Chemical and Alignment Structural Properties of Coal: Insights from Raman, Solid-State ¹³ C NMR, XRD, and HRTEM Techniques. ACS Omega, 2021, 6, 11266-11279.	3.5	17
7	Quantifying and Modeling of In Situ Stress Evolutions of Coal Reservoirs for Helium, Methane, Nitrogen and CO2 Depletions. Rock Mechanics and Rock Engineering, 2021, 54, 3701-3719.	5.4	13
8	Pore structure complexity and its significance to the petrophysical properties of coal measure gas reservoirs in Qinshui Basin, China. Frontiers of Earth Science, 2021, 15, 860-875.	2.1	2
9	Study on the Shale Gas Reservoir-Forming Characteristics of the Taiyuan Formation in the Eastern Qinshui Basin, China. Journal of Nanoscience and Nanotechnology, 2021, 21, 72-84.	0.9	2
10	Analysis of Developmental Characteristics and Dominant Factors of Pore-Fracture Systems in Lower Cambrian Marine Shale Reservoirs: A Case Study of the Niutitang Formation, Fenggang Block, Southern China. Journal of Nanoscience and Nanotechnology, 2021, 21, 57-71.	0.9	3
11	Chemical Structure Transformations in Kerogen from Longmaxi Shales in Response to Tectonic Stress as Investigated by HRTEM, FTIR, and ¹³ C NMR. Energy & Fuels, 2021, 35, 19496-19506.	5.1	5
12	Hybrid clusteringâ€based bad data detection of PMU measurements. Energy Conversion and Economics, 2021, 2, 235-247.	3.2	2
13	Evaluation of gas contents for a multi-seam deep coalbed methane reservoir and their geological controls: In situ direct method versus indirect method. Fuel, 2020, 265, 116917.	6.4	40
14	Investigation on pore structure and multifractal of tight sandstone reservoirs in coal bearing strata using LF-NMR measurements. Journal of Petroleum Science and Engineering, 2020, 187, 106757.	4.2	37
15	SANS coupled with fluid invasion approaches for characterization of overall nanopore structure and mesopore connectivity of organic-rich marine shales in China. International Journal of Coal Geology, 2020, 217, 103343.	5.0	20
16	Characterization of methane adsorption on shale of a complex tectonic area in Northeast Guizhou, China: Experimental results and geological significance. Journal of Natural Gas Science and Engineering, 2020, 84, 103676.	4.4	15
17	Factors controlling organic-matter accumulation in the Upper Ordovician-Lower Silurian organic-rich shale on the northeast margin of the Upper Yangtze platform: Evidence from petrographic and geochemical proxies. Marine and Petroleum Geology, 2020, 121, 104597.	3.3	22
18	Hydrocarbon Generation and Chemical Structure Evolution from Confined Pyrolysis of Bituminous Coal. ACS Omega, 2020, 5, 19682-19694.	3.5	8

#	Article	IF	CITATIONS
19	Structure and partial ordering of terrestrial kerogen: Insight from high-resolution transmission electron microscopy. Fuel, 2020, 281, 118759.	6.4	17
20	Evolution of Aromatic Clusters in Vitrinite-Rich Coal during Thermal Maturation by Using High-Resolution Transmission Electron Microscopy and Fourier Transform Infrared Measurements. Energy & Fuels, 2020, 34, 10781-10792.	5.1	15
21	Nanostructure Effect on Methane Adsorption Capacity of Shale with Type III Kerogen. Energies, 2020, 13, 1690.	3.1	8
22	The Genetic Mechanism and Evolution Process of Overpressure in the Upper Ordovician–Lower Silurian Black Shale Formation in the Southern Sichuan Basin. Minerals (Basel, Switzerland), 2020, 10, 238.	2.0	4
23	Supercritical Methane Adsorption on Shale over Wide Pressure and Temperature Ranges: Implications for Gas-in-Place Estimation. Energy & Fuels, 2020, 34, 3121-3134.	5.1	49
24	Experimental and theoretical investigation on sorption kinetics and hysteresis of nitrogen, methane, and carbon dioxide in coals. Fuel, 2020, 268, 117349.	6.4	39
25	Relationship between Tectonism and Composition and Pore Characteristics of Shale Reservoirs. Geofluids, 2020, 2020, 1-14.	0.7	15
26	Fractal Characteristics of Micro- and Mesopores in the Longmaxi Shale. Energies, 2020, 13, 1349.	3.1	14
27	Experimental study of the interplay between pore system and permeability using pore compressibility for high rank coal reservoirs. Fuel, 2019, 254, 115712.	6.4	35
28	The Early Silurian Sedimentary Environment of Middle-Upper Yangtze: Lithological and Palaeontological Evidence and Impact on Shale Gas Reservoir. Minerals (Basel, Switzerland), 2019, 9, 494.	2.0	2
29	Supercritical Methane Adsorption on Overmature Shale: Effect of Pore Structure and Fractal Characteristics. Energy & Fuels, 2019, 33, 8323-8337.	5.1	25
30	Geological models and controlling factors of gas content in marine–terrigenous shale in the Southern Qinshui Basin, China. Energy Exploration and Exploitation, 2019, 37, 375-393.	2.3	8
31	Molecular Structure of Kerogen in the Longmaxi Shale: Insights from Solid State NMR, FTâ€IR, XRD and HRTEM. Acta Geologica Sinica, 2019, 93, 1015-1024.	1.4	21
32	Pore Structure Heterogeneity of the Xiamaling Formation Shale Gas Reservoir in the Yanshan Area of China: Evaluation of Geological Controlling Factors. Acta Geologica Sinica, 2019, 93, 588-603.	1.4	17
33	Multi-proxy analysis of organic matter accumulation in the Upper Ordovician–Lower Silurian black shale on the Upper Yangtze Platform, south China. Marine and Petroleum Geology, 2019, 103, 473-484.	3.3	43
34	Effects of chemical composition, disorder degree and crystallite structure of coal macromolecule on nanopores (0.4–150†nm) in different rank naturally-matured coals. Fuel, 2019, 242, 553-561.	6.4	51
35	FRACTAL CHARACTERISTICS OF NANOSCALE PORES IN SHALE AND ITS IMPLICATIONS ON METHANE ADSORPTION CAPACITY. Fractals, 2019, 27, 1940014.	3.7	6
36	Experimental study on response characteristics of micro–macroscopic performance of red sandstone after high-temperature treatment. Journal of Thermal Analysis and Calorimetry, 2019, 136, 1935-1945.	3.6	40

#	Article	IF	CITATIONS
37	Experimental investigation of the stress-dependent permeability in the Longmaxi Formation shale. Journal of Petroleum Science and Engineering, 2019, 175, 932-947.	4.2	19
38	Coupled accumulation characteristics of Carboniferous-Permian coal measure gases in the Northern Ordos Basin, China. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	11
39	Comparative study of nanoscale pore structure of <scp>L</scp> ower <scp>P</scp> alaeozoic marine shales in the <scp>M</scp> iddleâ€ <scp>U</scp> pper <scp>Y</scp> angtze area, China: <scp>I</scp> mplications for gas production potential. Geological Journal, 2018, 53, 2413-2426.	1.3	9
40	Temperature effect on gas adsorption capacity in different sized pores of coal: Experiment and numerical modeling. Journal of Petroleum Science and Engineering, 2018, 165, 821-830.	4.2	54
41	MORPHOLOGY AND FRACTAL CHARACTERIZATION OF MULTISCALE PORE STRUCTURES FOR ORGANIC-RICH LACUSTRINE SHALE RESERVOIRS. Fractals, 2018, 26, 1840013.	3.7	13
42	Evaluation of hydrocarbons generated from the Permo-Carboniferous source rocks in Huanghua Depression of the Bohai Bay Basin, China. Energy Exploration and Exploitation, 2018, 36, 1229-1244.	2.3	6
43	Evaluation of Nanoscale Accessible Pore Structures for Improved Prediction of Gas Production Potential in Chinese Marine Shales. Energy & amp; Fuels, 2018, 32, 12447-12461.	5.1	24
44	Molecular structure controls on micropore evolution in coal vitrinite during coalification. International Journal of Coal Geology, 2018, 199, 19-30.	5.0	79
45	Evaluation of Spatial Alignment of Kerogen in Shale Using High-Resolution Transmission Electron Microscopy, Raman Spectroscopy, and Fourier Transform Infrared. Energy & Fuels, 2018, 32, 10616-10627.	5.1	29
46	A hierarchical methane adsorption characterization through a multiscale approach by considering the macromolecular structure and pore size distribution. Marine and Petroleum Geology, 2018, 96, 304-314.	3.3	22
47	A Fully Coupled Model for the Simulation of Gas Flow in Multiscale Shale Reservoirs Combining Multiple Effects. Applied Sciences (Switzerland), 2018, 8, 1063.	2.5	6
48	The effects of igneous intrusions on coal-bed macerals, maturity, and adsorption. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2017, 39, 58-66.	2.3	3
49	Structure and Fractal Characteristics of Nano-Micro Pores in Organic-Rich Qiongzhusi Formation Shales in Eastern Yunnan Province. Journal of Nanoscience and Nanotechnology, 2017, 17, 5996-6013.	0.9	6
50	Investigation of Shale Nano-Pore Characteristics by Scanning Electron Microscope and Low-Pressure Nitrogen Adsorption. Journal of Nanoscience and Nanotechnology, 2017, 17, 6252-6261.	0.9	8
51	Gas flow mechanisms under the effects of pore structures and permeability characteristics in source rocks of coal measures in Qinshui Basin, China. Energy Exploration and Exploitation, 2017, 35, 338-355.	2.3	16
52	Ultra micropores in macromolecular structure of subbituminous coal vitrinite. Fuel, 2017, 210, 298-306.	6.4	67
53	Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas. Sedimentary Geology, 2016, 342, 180-190.	2.1	125
54	Characterization of coalification jumps during high rank coal chemical structure evolution. Fuel, 2016, 185, 298-304.	6.4	60

#	Article	IF	CITATIONS
55	Shale gas enrichment pattern and exploration significance of Well WuXi-2 in northeast Chongqing, NE Sichuan Basin. Petroleum Exploration and Development, 2016, 43, 386-394.	7.0	48
56	Comparison of pore characteristics in the coal and shale reservoirs of Taiyuan Formation, Qinshui Basin, China. International Journal of Coal Science and Technology, 2016, 3, 330-338.	6.0	22
57	Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales. Fuel, 2016, 181, 227-237.	6.4	219
58	Methane adsorption measurements and modeling for organic-rich marine shale samples. Fuel, 2016, 172, 301-309.	6.4	113
59	Molecular simulation of methane adsorption in shale based on grand canonical Monte Carlo method and pore size distribution. Journal of Natural Gas Science and Engineering, 2016, 30, 119-126.	4.4	86
60	Molecular model and ReaxFF molecular dynamics simulation of coal vitrinite pyrolysis. Journal of Molecular Modeling, 2015, 21, 188.	1.8	27
61	Early Palaeozoic carbonate reservoirs from the Yingshan Formation of Well block ZG-43 in Tazhong Low Rise, Central Uplift, Tarim Basin, NW China: geological features and controlling factors. Geological Journal, 2014, 49, 256-270.	1.3	7
62	Study of a Vitrinite Macromolecular Structure Evolution Control Mechanism of the Energy Barrier in Hydrocarbon Generation. Energy & Fuels, 2014, 28, 500-509.	5.1	14
63	Characteristics of the Nanoscale Pore Structure in Northwestern Hunan Shale Gas Reservoirs Using Field Emission Scanning Electron Microscopy, High-Pressure Mercury Intrusion, and Gas Adsorption. Energy & Fuels, 2014, 28, 945-955.	5.1	238
64	Structural Characteristics of Coal Vitrinite during Pyrolysis. Energy & amp; Fuels, 2014, 28, 3645-3654.	5.1	106
65	Characteristics and differential accumulation of oil/gas in Lower Paleozoic marine carbonate on northern slope of Tazhong Low Rise, Tarim Basin, NW China: a case study of Lower Ordovician Yingshan Formation. Arabian Journal of Geosciences, 2014, 7, 4487-4498.	1.3	4
66	Research on the structural characteristics of vitrinite in different coal ranks. Fuel, 2013, 107, 647-652.	6.4	59
67	Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy, 2011, 36, 6609-6616.	8.8	366
68	Hydrocarbon generation evaluation of Permo-Carboniferous source rocks in Qinggu-2 well in Dongpu depression, China. Journal of Earth Science (Wuhan, China), 2010, 21, 94-103.	3.2	4
69	Hydrocarbon Generation Evolution of Permo arboniferous Rocks of the Bohai Bay Basin in China. Acta Geologica Sinica, 2010, 84, 370-381.	1.4	17
70	Evolution of hydrocarbon generation of Jurassic source rock of the Lenke-1 well in Lenghu tectonic belt of Qaidam basin, China. Mining Science and Technology, 2009, 19, 235-240.	0.3	0