
Jianfeng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11274697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO ₂ Reduction Revealed by Ag–Cu Nanodimers. Journal of the American Chemical Society, 2019, 141, 2490-2499.	13.7	382
2	Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nature Communications, 2018, 9, 3117.	12.8	253
3	Highly Catalytic Pdâ^'Ag Bimetallic Dendrites. Journal of Physical Chemistry C, 2010, 114, 15005-15010.	3.1	238
4	Site-Specific Growth of Au–Pd Alloy Horns on Au Nanorods: A Platform for Highly Sensitive Monitoring of Catalytic Reactions by Surface Enhancement Raman Spectroscopy. Journal of the American Chemical Society, 2013, 135, 8552-8561.	13.7	226
5	Ag Dendrite-Based Au/Ag Bimetallic Nanostructures with Strongly Enhanced Catalytic Activity. Langmuir, 2009, 25, 11890-11896.	3.5	184
6	Highâ€Performance Largeâ€Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles. Advanced Sustainable Systems, 2017, 1, 1600013.	5.3	145
7	Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds. Nature Communications, 2015, 6, 6957.	12.8	133
8	Harnessing structural darkness in the visible and infrared wavelengths for a new source of light. Nature Nanotechnology, 2016, 11, 60-66.	31.5	125
9	Synthesis of Cu/CeO _{2-x} Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO ₂ Electroreduction. ACS Catalysis, 2019, 9, 5035-5046.	11.2	124
10	Size dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO ₂ to CH ₄ . Chemical Communications, 2019, 55, 8796-8799.	4.1	99
11	Colloidal Nanocrystals as Heterogeneous Catalysts for Electrochemical CO ₂ Conversion. Chemistry of Materials, 2019, 31, 13-25.	6.7	91
12	Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances. Small, 2015, 11, 5214-5221.	10.0	76
13	Beyond Creation of Mesoporosity: The Advantages of Polymerâ€Based Dualâ€Function Templates for Fabricating Hierarchical Zeolites. Advanced Functional Materials, 2016, 26, 1881-1891.	14.9	66
14	Unravelling Thiol's Role in Directing Asymmetric Growth of Au Nanorod–Au Nanoparticle Dimers. Nano Letters, 2016, 16, 617-623.	9.1	58
15	Dual-Facet Mechanism in Copper Nanocubes for Electrochemical CO ₂ Reduction into Ethylene. Journal of Physical Chemistry Letters, 2019, 10, 4259-4265.	4.6	52
16	Plasmonicâ€Enhanced Light Harvesting and Perovskite Solar Cell Performance Using Au Biometric Dimers with Broadband Structural Darkness. Solar Rrl, 2019, 3, 1900138.	5.8	34
17	Copper-comprising nanocrystals as well-defined electrocatalysts to advance electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 62, 71-102.	12.9	26
18	Bifunctional polymer-of-intrinsic-microporosity membrane for flexible Li/Na–H ₂ O ₂ batteries with hybrid electrolytes. Journal of Materials Chemistry A, 2020, 8, 3491-3498.	10.3	8

JIANFENG HUANG

#	Article	IF	CITATIONS
19	Anodic SnO ₂ porous nanostructures with rich grain boundaries for efficient CO ₂ electroreduction to formate. RSC Advances, 2020, 10, 22828-22835.	3.6	7
20	In-situ polymerized nanosilica/acrylic/epoxy hybrid coating: Preparation, microstructure and properties. Science in China Series D: Earth Sciences, 2009, 52, 2204-2209.	0.9	4
21	Experimental Evidence of Chiral Gold Nanowires with Boerdijk-Coxeter-Bernal Structure by Atomic-Resolution Imaging. Microscopy and Microanalysis, 2014, 20, 1060-1061.	0.4	1
22	Nanocrystals: Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances (Small 39/2015). Small, 2015, 11, 5328-5328.	10.0	1
23	Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications. ACS Symposium Series, 2015, , 213-243.	0.5	1
24	STEM Tomography and Surface Plasmon Imaging of a Au-Pd Bi-metallic Nanorod with Exotic Morphology. Microscopy and Microanalysis, 2014, 20, 622-623.	0.4	0
25	Strain-Mediated Asymmetric Growth of Plasmonic Nanocrystals: A Monometallic Au Nanorod-Au Nanoparticle Heterodimer. Microscopy and Microanalysis, 2015, 21, 2207-2208.	0.4	Ο
26	Hierarchial Zeolites: Beyond Creation of Mesoporosity: The Advantages of Polymerâ€Based Dualâ€Function Templates for Fabricating Hierarchical Zeolites (Adv. Funct. Mater. 12/2016). Advanced Functional Materials, 2016, 26, 1854-1854.	14.9	0
27	Physicist meets chemist. Nature Nanotechnology, 2016, 11, 104-104.	31.5	0
28	Bio-inspired ultra dark nanoparticles for lasing and water desalination. , 2016, , .		0