Avrom J Caplan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11266165/publications.pdf Version: 2024-02-01

AVROM I CARLAN

#	Article	lF	CITATIONS
1	Specificity in the actions of the UBR1 ubiquitin ligase in the degradation of nuclear receptors. FEBS Open Bio, 2013, 3, 394-397.	2.3	8
2	A Network of Ubiquitin Ligases Is Important for the Dynamics of Misfolded Protein Aggregates in Yeast. Journal of Biological Chemistry, 2012, 287, 23911-23922.	3.4	63
3	Quality control and fate determination of Hsp90 client proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 683-688.	4.1	84
4	UBR1 promotes protein kinase quality control and sensitizes cells to Hsp90 inhibition. Experimental Cell Research, 2012, 318, 53-60.	2.6	25
5	Role of Molecular Chaperones in Biogenesis of the Protein Kinome. Methods in Molecular Biology, 2011, 787, 75-81.	0.9	11
6	Ubr1 and Ubr2 Function in a Quality Control Pathway for Degradation of Unfolded Cytosolic Proteins. Molecular Biology of the Cell, 2010, 21, 2102-2116.	2.1	126
7	Hsp110 Chaperones Control Client Fate Determination in the Hsp70–Hsp90 Chaperone System. Molecular Biology of the Cell, 2010, 21, 1439-1448.	2.1	54
8	Ydj1 Protects Nascent Protein Kinases from Degradation and Controls the Rate of Their Maturation. Molecular and Cellular Biology, 2008, 28, 4434-4444.	2.3	25
9	Multiple Kinases and System Robustness: A Link Between Cdc37 and Genome Integrity. Cell Cycle, 2007, 6, 3145-3147.	2.6	20
10	Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation. Journal of Cell Biology, 2007, 176, 319-328.	5.2	92
11	Uncoupling of hormone-dependence from chaperone-dependence in the L701H mutation of the androgen receptor. Molecular and Cellular Endocrinology, 2007, 268, 67-74.	3.2	9
12	Akt shows variable sensitivity to an Hsp90 inhibitor depending on cell context. Experimental Cell Research, 2007, 313, 3851-3858.	2.6	21
13	Molecular chaperones and protein kinase quality control. Trends in Cell Biology, 2007, 17, 87-92.	7.9	170
14	Cdc37 and protein kinase folding. , 2007, , 331-350.		3
15	The Chaperone And Co-Chaperone Activities of Cdc37 during Protein Kinase Maturation. , 2007, , 52-61.		0
16	Role of Cdc37 in Protein Kinase Folding. , 2007, , 326-337.		1
17	The Type I Hsp40 Zinc Finger-like Region Is Required for Hsp70 to Capture Non-native Polypeptides from Ydj1. Journal of Biological Chemistry, 2005, 280, 695-702.	3.4	63
18	Identification of a Conserved Sequence Motif That Promotes Cdc37 and Cyclin D1 Binding to Cdk4. Journal of Biological Chemistry, 2004, 279, 12560-12564.	3.4	45

AVROM J CAPLAN

#	Article	IF	CITATIONS
19	Sti1 and Cdc37 Can Stabilize Hsp90 in Chaperone Complexes with a Protein Kinase. Molecular Biology of the Cell, 2004, 15, 1785-1792.	2.1	81
20	Oxandrolone blocks glucocorticoid signaling in an androgen receptor-dependent manner. Steroids, 2004, 69, 357-366.	1.8	37
21	C-terminal Hsp-interacting protein slows androgen receptor synthesis and reduces its rate of degradation. Archives of Biochemistry and Biophysics, 2003, 410, 134-140.	3.0	104
22	What is a co-chaperone?. Cell Stress and Chaperones, 2003, 8, 105.	2.9	76
23	Overexpression of Yeast Hsp110 Homolog Sse1p Suppressesydj1-151Thermosensitivity and Restores Hsp90-dependent Activity. Molecular Biology of the Cell, 2002, 13, 2760-2770.	2.1	76
24	The Cdc37 protein kinase–binding domain is sufficient for protein kinase activity and cell viability. Journal of Cell Biology, 2002, 159, 1051-1059.	5.2	73
25	Functional Interaction of Human Cdc37 with the Androgen Receptor but Not with the Glucocorticoid Receptor. Journal of Biological Chemistry, 2001, 276, 5814-5820.	3.4	56
26	Apoprotein B Degradation Is Promoted by the Molecular Chaperones hsp90 and hsp70. Journal of Biological Chemistry, 2001, 276, 24891-24900.	3.4	117
27	Control of estrogen receptor ligand binding by Hsp90. Journal of Steroid Biochemistry and Molecular Biology, 2000, 72, 223-230.	2.5	117
28	Domain Requirements of DnaJ-like (Hsp40) Molecular Chaperones in the Activation of a Steroid Hormone Receptor. Journal of Biological Chemistry, 1999, 274, 34045-34052.	3.4	43
29	Hsp90's secrets unfold: new insights from structural and functional studies. Trends in Cell Biology, 1999, 9, 262-268.	7.9	165
30	Mutations in the Cytosolic DnaJ Homologue,YDJ1, Delay and Compromise the Efficient Translation of Heterologous Proteins in Yeastâ€. Biochemistry, 1998, 37, 18045-18055.	2.5	32
31	<i>SBA1</i> Encodes a Yeast Hsp90 Cochaperone That Is Homologous to Vertebrate p23 Proteins. Molecular and Cellular Biology, 1998, 18, 3727-3734.	2.3	148
32	Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress and Chaperones, 1998, 3, 28.	2.9	528
33	Differential In Vivo Regulation of Steroid Hormone Receptor Activation by Cdc37p. Molecular Biology of the Cell, 1997, 8, 2501-2509.	2.1	54
34	Hsp90 Regulates Androgen Receptor Hormone Binding Affinity in Vivo. Journal of Biological Chemistry, 1996, 271, 28697-28702.	3.4	203
35	Hormone-dependent Transactivation by the Human Androgen Receptor Is Regulated by a dnaJ Protein. Journal of Biological Chemistry, 1995, 270, 5251-5257.	3.4	123
36	XDJ1, a gene encoding a novel non-essential DnaJ homologue from Saccharomyces cerevisiae. Gene, 1994, 145, 121-124.	2.2	17

#	Article	IF	CITATIONS
37	YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell, 1992, 71, 1143-1155.	28.9	271