Ove Hermansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1126378/publications.pdf

Version: 2024-02-01

40 papers

1,991 citations

279798 23 h-index 39 g-index

57 all docs

57 docs citations

57 times ranked

3646 citing authors

#	Article	IF	Citations
1	Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.	4.9	353
2	History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth System Science Data, 2018, 10, 985-1018.	9.9	179
3	Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. Elementa, 2017, 5, .	3.2	172
4	Arctic methane sources: Isotopic evidence for atmospheric inputs. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	119
5	The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic?. Atmospheric Chemistry and Physics, 2013, 13, 8401-8409.	4.9	94
6	Changes in aerosol properties during spring-summer period in the Arctic troposphere. Atmospheric Chemistry and Physics, 2008, 8, 445-462.	4.9	86
7	Inverse modelling of European CH ₄ emissions during 2006–2012 using different inverse models and reassessed atmospheric observations. Atmospheric Chemistry and Physics, 2018, 18, 901-920.	4.9	77
8	Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophysical Research Letters, 2016, 43, 4624-4631.	4.0	74
9	Atmospheric constraints on the methane emissions from the East Siberian Shelf. Atmospheric Chemistry and Physics, 2016, 16, 4147-4157.	4.9	69
10	Reconciling reported and unreported HFC emissions with atmospheric observations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5927-5931.	7.1	66
11	Indoor and Outdoor Particle Number and Mass Concentrations in Athens. Sources, Sinks and Variability of Aerosol Parameters. Aerosol and Air Quality Research, 2011, 11, 632-642.	2.1	61
12	Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates. Journal of Geophysical Research, 2007, 112, .	3.3	48
13	Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa. Journal of Geophysical Research, 2011, 116, .	3.3	48
14	Linking atmospheric dimethyl sulfide and the Arctic Ocean spring bloom. Geophysical Research Letters, 2013, 40, 155-160.	4.0	41
15	Global and regional emission estimates for HCFC-22. Atmospheric Chemistry and Physics, 2012, 12, 10033-10050.	4.9	40
16	Global emissions of HFC-143a (CH _{CF₃) and HFC-32 (CH₂) from in situ and air archive atmospheric observations. Atmospheric Chemistry and Physics, 2014, 14, 9249-9258.}	4.9	39
17	Global and regional emissions of HFCâ€125 (CHF ₂ CF ₃) from in situ and air archive atmospheric observations at AGAGE and SOGE observatories. Journal of Geophysical Research, 2009, 114, .	3.3	38
18	Atmospheric histories and emissions of chlorofluorocarbons CFC-13 (CClF ₃), ΣCFC-114 (C ₂ Cl ₂ 50. (C ₂ ClF ₅). Atmospheric Chemistry and Physics, 2018, 18, 979-1002.	o;g t;\$ &am	ıp; lt øsub&amţ

#	Article	IF	Citations
19	Yearâ€Round In Situ Measurements of Arctic Lowâ€Level Clouds: Microphysical Properties and Their Relationships With Aerosols. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1798-1822.	3.3	31
20	The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO ₂ measurements. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190513.	4.0	31
21	Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a,) Tj ETQq1 1 0.784314 rgBT /Overlock and air archive observations. Atmospheric Chemistry and Physics, 2016, 16, 365-382.	10 Tf 50 6 4.9	567 Td (CH&a 30
22	Atmospheric DMS in the Arctic Ocean and Its Relation to Phytoplankton Biomass. Global Biogeochemical Cycles, 2018, 32, 351-359.	4.9	30
23	Atmospheric histories and global emissions of halons Hâ€1211 (CBrClF ₂), Hâ€1301 (CBrF ₃), and Hâ€2402 (CBrF ₂ CBrF ₂). Journal of Geophysical Research D: Atmospheres, 2016, 121, 3663-3686.	3.3	24
24	Perfluorocyclobutane (PFC-318,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Td (<i>c<td>np;gt;-C&a 4.9</td><td>amp;lt;sub&ar 22</td></i>	np;gt;-C&a 4.9	amp;lt;sub&ar 22
25	Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements. Atmospheric Chemistry and Physics, 2017, 17, 8371-8394.	4.9	20
26	Dimethyl Sulfideâ€Induced Increase in Cloud Condensation Nuclei in the Arctic Atmosphere. Global Biogeochemical Cycles, 2021, 35, e2021GB006969.	4.9	20
27	Methane at Svalbard and over the European Arctic Ocean. Atmospheric Chemistry and Physics, 2018, 18, 17207-17224.	4.9	19
28	Unexpected nascent atmospheric emissions of three ozone-depleting hydrochlorofluorocarbons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
29	Effect of seasonal mesoscale and microscale meteorological conditions in Ny-Ã…lesund on results of monitoring of long-range transported pollution. Polar Research, 2018, 37, 1508196.	1.6	14
30	Evaluation and optimization of ICOS atmosphere station data as part of the labeling process. Atmospheric Measurement Techniques, 2021, 14, 89-116.	3.1	13
31	HFC-43-10mee atmospheric abundances and global emission estimates. Geophysical Research Letters, 2014, 41, 2228-2235.	4.0	12
32	Temporal Variability in Surface Water <i>p</i> CO ₂ in Adventfjorden (West Spitsbergen) With Emphasis on Physical and Biogeochemical Drivers. Journal of Geophysical Research: Oceans, 2018, 123, 4888-4905.	2.6	11
33	Large seasonal and interannual variations of biogenic sulfur compounds in the Arctic atmosphere (Svalbard; 78.9° N, 11.9° E). Atmospheric Chemistry and Physics, 2021, 21, 9761-9777.	4.9	11
34	Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14188-14200.	3.3	10
35	Influence of local and regional air pollution on atmospheric measurements in Ny-Ãlesund. International Journal of Sustainable Development and Planning, 2016, 11, 578-587.	0.7	9
36	Atmospheric methane at Zeppelin Station in Ny-Ãlesund: Presentation and analysis of in situ measurements. Journal of Environmental Monitoring, 2005, 7, 488.	2.1	7

#	ARTICLE ARTICL	IF	CITATIONS
37	CH ₃ Br, and CH ₃ I and emission of CHCl ₃ , CHBr ₃ , and CH ₂ Br ₂ from the	4.9	6
38	forefield of a retreating Arctic glacier. Atmospheric Chemistry and Physics, 2020, 20, 7243-7258. Corrigendum to "Global and regional emission estimates for HCFC-22", Atmos. Chem. Phys., 12, 10033–10050, 2012. Atmospheric Chemistry and Physics, 2014, 14, 4857-4858.	4.9	4
39	A Tracer Method for Evaluating Recirculation of Pollutant Releases in Buildings. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2002, 63, 234-238.	0.4	2
40	INDOOR BLACK CARBON AND AEROSOL PRECURSORS IN THREE TYPICAL RESIDENTIAL APARTMENTS IN ATHENS, GREECE. Journal of Aerosol Science, 2004, 35, S745-S746.	3.8	0