J Enrique Luco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11259605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ Ambient Vibration Study of a 900-kw Wind Turbine. Journal of Earthquake Engineering, 2021, 25, 2971-2992.	2.5	1
2	Comprehensive mechanicsâ€based virtual model of NHERI@UCSD shake table—Uniaxial configuration and bare table condition. Earthquake Engineering and Structural Dynamics, 2021, 50, 3288-3310.	4.4	6
3	Numerical artifacts associated with Rayleigh and modal damping models of inelastic structures with massless coordinates. Earthquake Engineering and Structural Dynamics, 2019, 48, 1491-1507.	4.4	12
4	Elastic Velocity Damping Model for Inelastic Structures. Journal of Structural Engineering, 2018, 144, 04018065.	3.4	10
5	Comment on "The Relation between Ground Acceleration and Earthquake Source Parameters: Theory and Observations―by Itzhak Lior and Alon Ziv. Bulletin of the Seismological Society of America, 2018, 108, 3695-3697.	2.3	0
6	Response to John Hall's discussion (EQE-17-0454) to Luco and Lanzi's paper, "A New Inherent Damping Model for Inelastic Time-History Analyses― Earthquake Engineering and Structural Dynamics, 2018, 47, 2140-2144.	4.4	0
7	A new inherent damping model for inelastic timeâ€history analyses. Earthquake Engineering and Structural Dynamics, 2017, 46, 1919-1939.	4.4	18
8	Explicit Representation of Classical Damping Matrices by Caughey Series with Rational Fractional Powers. Journal of Engineering Mechanics - ASCE, 2017, 143, 06017008.	2.9	7
9	Caughey Damping Series in Terms of Products of the Flexibility Matrix. Journal of Engineering Mechanics - ASCE, 2017, 143, .	2.9	12
10	Optimal Caughey series representation of classical damping matrices. Soil Dynamics and Earthquake Engineering, 2017, 92, 253-265.	3.8	10
11	Shake table testing and numerical simulation of a utilityâ€scale wind turbine including operational effects. Wind Energy, 2014, 17, 997-1016.	4.2	49
12	Approximate soil–structure interaction analysis by a perturbation approach: The case of soft soils. Soil Dynamics and Earthquake Engineering, 2014, 66, 415-428.	3.8	5
13	Effects of soil–structure interaction on seismic base isolation. Soil Dynamics and Earthquake Engineering, 2014, 66, 167-177.	3.8	28
14	Approximate soil-structure interaction analysis by a perturbation approach: The case of stiff soils. Soil Dynamics and Earthquake Engineering, 2013, 51, 97-110.	3.8	12
15	Shake Table Testing of a Utility-Scale Wind Turbine. Journal of Engineering Mechanics - ASCE, 2012, 138, 900-909.	2.9	27
16	Approximate Boundaries for Finite-Element Models of Static Soil–Foundation Interaction Problems. Journal of Engineering Mechanics - ASCE, 2011, 137, 648-659.	2.9	5
17	Effect of Hanger Flexibility on Dynamic Response of Suspension Bridges. Journal of Engineering Mechanics - ASCE, 2010, 136, 1444-1459.	2.9	38
18	A note on classical damping matrices. Earthquake Engineering and Structural Dynamics, 2008, 37, 615-626.	4.4	18

J Enrique Luco

#	Article	IF	CITATIONS
19	A note on classical damping matrices, <i>Earthquake Engineering and Structural Dynamics</i> 2008; 37 :615–626. Earthquake Engineering and Structural Dynamics, 2008, 37, 1805-1809.	4.4	7
20	Identification of structural and soil properties from vibration tests of the Hualien containment model. Earthquake Engineering and Structural Dynamics, 2005, 34, 21-48.	4.4	6
21	Seismic base-isolation by use of a telescoping stepping mechanism. Earthquake Engineering and Structural Dynamics, 2005, 34, 227-245.	4.4	1
22	Response of a double-wedge base-isolation device. Earthquake Engineering and Structural Dynamics, 2004, 33, 1271-1286.	4.4	3
23	Assessment of predictions of the response of the Hualien containment model during forced vibration tests. Soil Dynamics and Earthquake Engineering, 2004, 24, 1013-1035.	3.8	5
24	Control of the seismic response of a composite tall building modelled by two interconnected shear beams. Earthquake Engineering and Structural Dynamics, 1998, 27, 205-223.	4.4	27
25	A simple model for structural control including soil-structure interaction effects. Earthquake Engineering and Structural Dynamics, 1998, 27, 225-242.	4.4	23
26	Optimal damping between two adjacent elastic structures. Earthquake Engineering and Structural Dynamics, 1998, 27, 649-659.	4.4	113
27	Optimal damping between two adjacent elastic structures. Earthquake Engineering and Structural Dynamics, 1998, 27, 649-659.	4.4	6
28	Identification of foundation impedance functions and soil properties from vibration tests of the Hualien containment model. Soil Dynamics and Earthquake Engineering, 1995, 14, 229-248.	3.8	34
29	Discrete models for vertical vibrations of surface and embedded foundations. Earthquake Engineering and Structural Dynamics, 1990, 19, 289-303.	4.4	75
30	Foundation Impedance Functions: Theory Versus Experiment. Journal of Geotechcnical Engineering, 1990, 116, 432-449.	0.4	34
31	Impedance Functions and Input Motions for Embedded Square Foundations. Journal of Geotechcnical Engineering, 1989, 115, 491-503.	0.4	63
32	Dynamic response of a square foundation embedded in an elastic half-space. Soil Dynamics and Earthquake Engineering, 1989, 8, 54-67.	3.8	39
33	A note on the steady-state response of an elastic medium to a moving dislocation of finite width. Soil Dynamics and Earthquake Engineering, 1988, 7, 170-175.	3.8	2
34	Response of Hemispherical Foundation Embedded in Half‧pace. Journal of Engineering Mechanics - ASCE, 1986, 112, 1363-1374.	2.9	24
35	Steady-state response of an elastic half-space to a moving dislocation of finite width. Bulletin of the Seismological Society of America, 1983, 73, 1-22.	2.3	29
36	On the Green's functions for a layered half-space. Part II. Bulletin of the Seismological Society of America, 1983, 73, 931-951.	2.3	298

J Enrique Luco

#	Article	IF	CITATIONS
37	Parametric study of near-field ground motions for oblique-slip and dip-slip dislocation models. Bulletin of the Seismological Society of America, 1983, 73, 45-57.	2.3	27
38	Transmitting boundaries for time-harmonic elastodynamics on infinite domains. International Journal for Numerical Methods in Engineering, 1981, 17, 1697-1716.	2.8	17
39	Vibrations of a rigid disc on a layered viscoelastic medium. Nuclear Engineering and Design, 1976, 36, 325-340.	1.7	74