Jacob H Masliyah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11256600/publications.pdf

Version: 2024-02-01

47006 76900 172 7,513 47 74 citations g-index h-index papers 177 177 177 4606 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Water-in-Hydrocarbon Emulsions Stabilized by Asphaltenes at Low Concentrations. Journal of Colloid and Interface Science, 2000, 228, 52-63.	9.4	267
2	Measurement of the Zeta Potential of Gas Bubbles in Aqueous Solutions by Microelectrophoresis Method. Journal of Colloid and Interface Science, 2001, 243, 128-135.	9.4	245
3]Hindered settling in a multi-species particle system. Chemical Engineering Science, 1979, 34, 1166-1168.	3.8	201
4	On water-in-oil emulsions stabilized by fine solids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 193, 97-107.	4.7	201
5	Mathematical modelling of flow through consolidated isotropic porous media. Transport in Porous Media, 1988, 3, 145-161.	2.6	150
6	Flow through isotropic granular porous media. Transport in Porous Media, 1991, 6, 207-221.	2.6	143
7	Roles of Various Bitumen Components in the Stability of Water-in-Diluted-Bitumen Emulsions. Journal of Colloid and Interface Science, 1999, 220, 329-337.	9.4	137
8	Terminal velocity of porous spheres. Canadian Journal of Chemical Engineering, 1980, 58, 299-302.	1.7	126
9	Axially invariant laminar flow in helical pipes with a finite pitch. Journal of Fluid Mechanics, 1993, 251, 315-353.	3.4	122
10	Creeping flow over a composite sphere: Solid core with porous shell. Chemical Engineering Science, 1987, 42, 245-253.	3.8	120
11	Mechanistic Study on Demulsification of Water-in-Diluted Bitumen Emulsions by Ethylcellulose. Langmuir, 2010, 26, 3050-3057.	3.5	114
12	Aggregation and Partitioning of Model Asphaltenes at Tolueneâ^'Water Interfaces: Molecular Dynamics Simulations. Energy & Energy & 2009, 23, 5027-5035.	5.1	111
13	Bifurcation in steady laminar flow through curved tubes. Journal of Fluid Mechanics, 1982, 119, 475-490.	3.4	110
14	Characterization and demulsification of solids-stabilized oil-in-water emulsions Part 1. Partitioning of clay particles and preparation of emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96, 229-242.	4.7	110
15	Numerical study of steady flow past spheroids. Journal of Fluid Mechanics, 1970, 44, 493-512.	3.4	108
16	Langmuir and Langmuirâ^'Blodgett Films of Mixed Asphaltene and a Demulsifier. Langmuir, 2003, 19, 9730-9741.	3.5	104
17	Probing Surface Charge Potentials of Clay Basal Planes and Edges by Direct Force Measurements. Langmuir, 2008, 24, 12899-12910.	3.5	92
18	Studies of Athabasca asphaltene Langmuir films at air–water interface. Journal of Colloid and Interface Science, 2003, 264, 128-140.	9.4	82

#	Article	IF	CITATIONS
19	Effect of pH on Adsorption and Desorption of Clay Particles at Oil–Water Interface. Journal of Colloid and Interface Science, 1996, 181, 20-27.	9.4	81
20	A Study of Oil Displacement on Model Surfaces. Journal of Colloid and Interface Science, 1996, 182, 82-94.	9.4	81
21	Fractal structure of asphaltene aggregates. Journal of Colloid and Interface Science, 2005, 285, 599-608.	9.4	79
22	Electrokinetic Phenomena in concentrated disperse systems: General problem formulation and Spherical Cell Approach. Advances in Colloid and Interface Science, 2007, 134-135, 279-321.	14.7	78
23	Adsorption and Desorption of Clay Particles at the Oil-Water Interface. Journal of Colloid and Interface Science, 1994, 168, 386-392.	9.4	76
24	SINGLE FLUID FLOW IN POROUS MEDIA. Chemical Engineering Communications, 1996, 148-150, 653-732.	2.6	75
25	Non-linear flows in porous media. Journal of Non-Newtonian Fluid Mechanics, 1999, 86, 229-252.	2.4	72
26	Numerical Model of Electrokinetic Flow for Capillary Electrophoresis. Journal of Colloid and Interface Science, 1999, 215, 300-312.	9.4	72
27	Determination of Anisotropic Surface Characteristics of Different Phyllosilicates by Direct Force Measurements. Langmuir, 2011, 27, 12996-13007.	3.5	72
28	Sandwich Structures at Oil–Water Interfaces under Alkaline Conditions. Journal of Colloid and Interface Science, 2002, 253, 427-434.	9.4	71
29	Characterization of asphaltenes aggregation and fragmentation in a shear field. AICHE Journal, 2003, 49, 1645-1655.	3.6	70
30	Flocculation of kaolinite clay suspensions using a temperature-sensitive polymer. AICHE Journal, 2007, 53, 479-488.	3.6	70
31	Prediction of sedimentation and consolidation of fine tails. AICHE Journal, 1996, 42, 960-972.	3.6	68
32	Phase Behavior of Sodium Naphthenates, Toluene, and Water. Journal of Colloid and Interface Science, 2001, 242, 247-254.	9.4	68
33	Asphaltene Monolayers at a Toluene/Water Interfaceâ€. Energy & Fuels, 2005, 19, 1330-1336.	5.1	67
34	Adsorption of Bituminous Components at Oil/Water Interfaces Investigated by Quartz Crystal Microbalance:Â Implications to the Stability of Water-in-Oil Emulsions. Langmuir, 2005, 21, 8278-8289.	3.5	64
35	Laminar flow past a permeable sphere. Canadian Journal of Chemical Engineering, 1982, 60, 202-211.	1.7	63
36	A Model for Detachment of a Partially Wetting Drop from a Solid Surface by Shear Flow. Journal of Colloid and Interface Science, 1997, 190, 253-257.	9.4	61

#	Article	IF	Citations
37	Role of fine kaolinite clay in toluene-diluted bitumen/water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215, 141-153.	4.7	61
38	An electrokinetic model of drop deformation in an electric field. Journal of Fluid Mechanics, 2002, 472, 1-27.	3.4	60
39	Evolution of asphaltene floc size distribution in organic solvents under shear. Chemical Engineering Science, 2004, 59, 685-697.	3.8	59
40	Wettability Control Mechanism of Highly Contaminated Hydrophilic Silica/Alumina Surfaces by Ethyl Cellulose. Journal of Physical Chemistry C, 2011, 115, 10576-10587.	3.1	59
41	Measurement of Contact Angles for Fumed Silica Nanospheres Using Enthalpy of Immersion Data. Journal of Colloid and Interface Science, 2000, 228, 1-6.	9.4	58
42	Coagulation of bitumen with fine silica in model systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 148, 199-211.	4.7	56
43	Asphaltene Films at a Toluene/Water Interface. Energy & Samp; Fuels, 2007, 21, 274-285.	5.1	56
44	Solids-stabilized oil-in-water emulsions: Scavenging of emulsion droplets by fresh oil addition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 75, 123-132.	4.7	53
45	On laminar flow in curved semicircular ducts. Journal of Fluid Mechanics, 1980, 99, 469-479.	3.4	49
46	Some Observations on the Contraction Behavior of a Water-in-Oil Drop with Attached Solids. Industrial & Engineering Chemistry Research, 2005, 44, 1241-1249.	3.7	49
47	Gravity separation of bidisperse suspensions: Light and heavy particle species. Chemical Engineering Science, 1987, 42, 1527-1538.	3.8	47
48	Biological remediation of anthracene-contaminated soil in rotating bioreactors. Applied Microbiology and Biotechnology, 1994, 40, 933-940.	3.6	47
49	Adsorption isotherms of associating asphaltenes at oil/water interfaces based on the dependence of interfacial tension on solvent activity. Journal of Colloid and Interface Science, 2005, 283, 5-17.	9.4	47
50	Effect of Operating Temperature on Waterâ€Based Oil Sands Processing. Canadian Journal of Chemical Engineering, 2007, 85, 726-738.	1.7	47
51	Bifurcation in steady laminar mixed convection flow in horizontal ducts. Journal of Fluid Mechanics, 1985, 152, 145-161.	3.4	46
52	Effect of charged colloidal particles on adsorption of surfactants at oil–water interface. Journal of Colloid and Interface Science, 2004, 274, 625-630.	9.4	46
53	Hydrodynamic Dispersion due to Combined Pressure-Driven and Electroosmotic Flow Through Microchannels with a Thin Double Layer. Analytical Chemistry, 2004, 76, 2708-2718.	6.5	46
54	Effect of Divalent Cations and Surfactants on Silicaâ^Bitumen Interactions. Industrial & Engineering Chemistry Research, 2006, 45, 7482-7490.	3.7	46

#	Article	IF	CITATIONS
55	Bubble size in coalescence dominant regime of turbulent air–water flow through horizontal pipes. International Journal of Multiphase Flow, 2003, 29, 1451-1471.	3.4	45
56	On non-Newtonian fluid flow in ducts and porous media. Chemical Engineering Science, 1998, 53, 1175-1201.	3.8	44
57	Particle Capture and Plugging in Packed-Bed Reactors. Industrial & Engineering Chemistry Research, 1997, 36, 4620-4627.	3.7	43
58	Characterization of Adsorbed Athabasca Asphaltene Films at Solventâ^Water Interfaces Using a Langmuir Interfacial Trough. Industrial & Engineering Chemistry Research, 2005, 44, 1160-1174.	3.7	43
59	Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: Muscovite and talc. Journal of Colloid and Interface Science, 2013, 404, 183-191.	9.4	43
60	Characterization and demulsification of solids-stabilized oil-in-water emulsions Part 2. Demulsification by the addition of fresh oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 96, 243-252.	4.7	42
61	Kinetics of Particle Transport to a Solid Surface from an Impinging Jet under Surface and External Force Fields. Journal of Colloid and Interface Science, 1998, 208, 226-240.	9.4	41
62	Pressure buildup in gasâ€iquid flow through packed beds due to deposition of fine particles. Canadian Journal of Chemical Engineering, 2002, 80, 346-354.	1.7	41
63	Attachment of individual particles to a stationary air bubble in model systems. International Journal of Mineral Processing, 2003, 68, 47-69.	2.6	41
64	Adhesion of Single Polyelectrolyte Molecules on Silica, Mica, and Bitumen Surfaces. Langmuir, 2006, 22, 1652-1659.	3.5	41
65	A novel experimental technique to study single bubble–bitumen attachment in flotation. International Journal of Mineral Processing, 2004, 74, 15-29.	2.6	40
66	Electroosmotic Dispersion in Microchannels with a Thin Double Layer. Analytical Chemistry, 2003, 75, 901-909.	6.5	39
67	Rheology of Suspensions. Advances in Chemistry Series, 1996, , 107-176.	0.6	38
68	Creeping flow through clusters of spheroids and elliptical cylinders. The Chemical Engineering Journal, 1972, 3, 169-175.	0.3	37
69	Study of Al(OH) ₃ â^'Polyacrylamide-Induced Pelleting Flocculation by Single Molecule Force Spectroscopy. Langmuir, 2008, 24, 14015-14021.	3.5	37
70	Emulsion stability based on phase behavior in sodium naphthenates containing systems: Gels with a high organic solvent content. Journal of Colloid and Interface Science, 2003, 257, 299-309.	9.4	35
71	Flocculation kinetics and aggregate structure of kaolinite mixtures in laminar tube flow. Journal of Colloid and Interface Science, 2011, 355, 96-105.	9.4	35
72	Single Molecule Force Spectroscopy of Asphaltene Aggregates. Langmuir, 2007, 23, 6182-6190.	3.5	34

#	Article	IF	CITATIONS
73	Understanding suspension rheology of anisotropically-charged platy minerals from direct interaction force measurement using AFM. Current Opinion in Colloid and Interface Science, 2013, 18, 149-156.	7.4	34
74	Developing convective heat transfer in helical pipes with finite pitch. International Journal of Heat and Fluid Flow, 1994, 15, 66-74.	2.4	33
75	Self-Preservation of the Drop Size Distribution Function and Variation in the Stability Ratio for Rapid Coalescence of a Polydisperse Emulsion in a Simple Shear Field. Journal of Colloid and Interface Science, 1998, 197, 57-67.	9.4	32
76	An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions. International Journal of Mineral Processing, 2005, 75, 69-82.	2.6	32
77	Role of illite–illite interactions in oil sands processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 202-214.	4.7	32
78	Deposition of Fine Particles in Packed Beds at Hydrotreating Conditions:Â Role of Surface Chemistry. Industrial & Engineering Chemistry Research, 1999, 38, 4878-4888.	3.7	31
79	Effect of particle size on the rheology of Athabasca clay suspensions. Canadian Journal of Chemical Engineering, 2009, 87, 422-434.	1.7	31
80	Interaction of Ionic Species and Fine Solids with a Low Energy Hydrophobic Surface from Contact Angle Measurement. Journal of Colloid and Interface Science, 1998, 204, 342-349.	9.4	27
81	Hydrodynamic Cell Model: General Formulation and Comparative Analysis of Different Approaches. Canadian Journal of Chemical Engineering, 2007, 85, 701-725.	1.7	27
82	Improving Oil Sands Processability Using a Temperature-Sensitive Polymer. Energy & E	5.1	27
83	Online Optical Monitoring of Asphaltene Aggregation. Industrial & Engineering Chemistry Research, 2005, 44, 75-84.	3.7	25
84	Particle Deposition onto Charge Heterogeneous Surfaces:Â Convectionâ^'Diffusionâ^'Migration Model. Langmuir, 2006, 22, 9879-9893.	3.5	25
85	Novel polymer aids for lowâ€grade oil sand ore processing. Canadian Journal of Chemical Engineering, 2008, 86, 168-176.	1.7	25
86	Fully developed viscous flow and heat transfer in curved semicircular sectors. AICHE Journal, 1979, 25, 478-487.	3.6	24
87	Settling Properties of Asphaltene Aggregates. Energy & Dong Fuels, 2005, 19, 1099-1108.	5.1	24
88	Particle deposition onto micropatterned charge heterogeneous substrates: Trajectory analysis. Journal of Colloid and Interface Science, 2006, 293, 1-15.	9.4	24
89	Spherical Cell Approach for the Effective Viscosity of Suspensions. Journal of Physical Chemistry B, 2006, 110, 19726-19734.	2.6	23
90	DNA Dynamics in Nanoscale Confinement under Asymmetric Pulsed Field Electrophoresis. Angewandte Chemie - International Edition, 2010, 49, 3326-3329.	13.8	23

#	Article	IF	Citations
91	Mass transfer due to an impinging slot jet. International Journal of Heat and Mass Transfer, 1979, 22, 237-244.	4.8	22
92	Mass transfer due to a confined laminar impinging two-dimensional jet. International Journal of Heat and Mass Transfer, 1984, 27, 529-539.	4.8	22
93	Colloidal Interactions between Langmuirâ°'Blodgett Bitumen Films and Fine Solid Particles. Langmuir, 2006, 22, 8831-8839.	3.5	22
94	Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids. Advances in Colloid and Interface Science, 2015, 217, 31-42.	14.7	22
95	Side-view-only determination of drag coefficient and settling velocity for non-spherical particles. Powder Technology, 2018, 339, 182-191.	4.2	22
96	Toluene-insoluble fraction from thermal cracking of Athabasca gas oil: formation of a liquid-in-oil emulsion that wets hydrophobic dispersed solids. Fuel, 1998, 77, 1647-1653.	6.4	21
97	Poisson–Boltzmann equation for spherical cell model: approximate analytical solution and applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 192, 235-251.	4.7	21
98	Langmuir Films of Bitumen at Oil/Water Interfaces. Energy & Energy & 2006, 20, 1572-1578.	5.1	21
99	Polymer aids for settling and filtration of oil sands tailings. Canadian Journal of Chemical Engineering, 2010, 88, 403-410.	1.7	21
100	Use of Short-Chain Amine in Processing of Weathered/Oxidized Oil Sands Ores. Energy & Dieses, 2010, 24, 3581-3588.	5.1	21
101	Flow perpendicular to mats of randomly arranged cylindrical fibers(importance of cell models). AICHE Journal, 1975, 21, 805-807.	3.6	20
102	Mass transfer due to a confined laminar impinging axisymmetric jet. Industrial & Engineering Chemistry Fundamentals, 1984, 23, 446-454.	0.7	20
103	Creaming Behavior of Solids-Stabilized Oil-in-Water Emulsions. Industrial & Engineering Chemistry Research, 1997, 36, 1122-1129.	3.7	20
104	Effect of surface mobility on the particle sliding along a bubble or a solid sphere. Journal of Colloid and Interface Science, 2003, 259, 81-88.	9.4	20
105	Interfacial Films Adsorbed from Bitumen in Toluene Solution at a Tolueneâ^'Water Interface: A Langmuir and Langmuirâ^'Blodgett Film Approach. Energy & Energy & 2008, 22, 1784-1791.	5.1	20
106	Broadening of neutral analyte band in electroosmotic flow through slit channel with different zeta potentials of the walls. Microfluidics and Nanofluidics, 2013, 15, 35-47.	2.2	20
107	Dissipation of Film Drainage Resistance by Hydrophobic Surfaces in Aqueous Solutions. Journal of Physical Chemistry C, 2013, 117, 8799-8805.	3.1	19
108	Numerical prediction of the flow field due to a confined laminar two-dimensional submerged jet. Computers and Fluids, 1984, 12, 199-215.	2.5	18

#	Article	IF	CITATIONS
109	Gibbsâ''Langmuir Model for Interfacial Tension of Nonideal Organic Mixtures over Water. The Journal of Physical Chemistry, 1996, 100, 1786-1792.	2.9	18
110	Effect of NaCl and MIBC/kerosene on bitumen displacement by water on a glass surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 71-80.	4.7	18
111	Effect of Hydrophobic and Hydrophilic Clays on Bitumen Displacement by Water on a Glass Surface. Industrial & Displacement on a Glass Surface.	3.7	17
112	Effect of molecular weight and charge density on the performance of polyacrylamide in lowâ€grade oil sand ore processing. Canadian Journal of Chemical Engineering, 2008, 86, 177-185.	1.7	17
113	A systematic evaluation of the role of crystalline order in nanoporous materials on DNA separation. Lab on A Chip, 2012, 12, 146-152.	6.0	17
114	Settling behaviour of heavy and buoyant particles from a suspension in an inclined channel. Journal of Fluid Mechanics, 1988, 187, 301-318.	3.4	16
115	Demulsification of solids-stabilized oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 117, 15-25.	4.7	16
116	Kinetics of microbubble–solid surface interaction and attachment. AICHE Journal, 2003, 49, 1024-1037.	3.6	16
117	Gasâ€solid mass transfer in a rotating drum. Canadian Journal of Chemical Engineering, 1998, 76, 224-232.	1.7	15
118	Electrostatic Repulsion in Concentrated Disperse Systems. Journal of Colloid and Interface Science, 2001, 234, 293-315.	9.4	15
119	Acoustic and Electroacoustic Spectroscopy of Water-in-Diluted-Bitumen Emulsions. Langmuir, 2005, 21, 8649-8657.	3.5	15
120	Characterization of the Charge Carriers in Bitumen. Energy & Samp; Fuels, 2006, 20, 2099-2108.	5.1	15
121	Steady Symmetric Flow Past Elliptical Cylinders. Industrial & Engineering Chemistry Fundamentals, 1971, 10, 293-299.	0.7	14
122	On bitumen liberation from oil sands. Canadian Journal of Chemical Engineering, 1997, 75, 476-479.	1.7	14
123	Analysis of Fine Bubble Attachment onto a Solid Surface within the Framework of Classical DLVO Theory. Journal of Colloid and Interface Science, 1999, 219, 69-80.	9.4	14
124	A Visualizing Method for Study of Micron Bubble Attachment onto a Solid Surface under Varying Physicochemical Conditions. Industrial & Engineering Chemistry Research, 2000, 39, 4949-4955.	3.7	14
125	Probing Mechanical Properties of Water–Crude Oil Interfaces and Colloidal Interactions of Petroleum Emulsions Using Atomic Force Microscopy. Energy & 2017, 31, 3445-3453.	5.1	14
126	Theoretical and experimental studies of a gravity separation vessel. Industrial & Engineering Chemistry Process Design and Development, 1981, 20, 154-160.	0.6	13

#	Article	IF	Citations
127	Surface forces in unconventional oil processing. Current Opinion in Colloid and Interface Science, 2017, 27, 63-73.	7.4	13
128	Liquid-side mass transfer coefficients for liquids and slurries in a rotating drum. Chemical Engineering Science, 1993, 48, 3442-3446.	3.8	12
129	Continuous Demulsification of Solids-Stabilized Oil-in-Water Emulsions by the Addition of Fresh Oil. Industrial & Samp; Engineering Chemistry Research, 1997, 36, 2634-2640.	3.7	12
130	Influence of cross-section geometry on band broadening in plug-flow microchannels. Chemical Engineering Science, 2006, 61, 4155-4164.	3.8	12
131	Effect of weathering on oil sands processability. Canadian Journal of Chemical Engineering, 2009, 87, 879-886.	1.7	12
132	Broadening of neutral solute band in electroosmotic flow through submicron channel with longitudinal non-uniformity of zeta potential. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 338-346.	4.7	12
133	Holographic determination of mass transfer due to impinging square jet. Canadian Journal of Chemical Engineering, 1976, 54, 299-304.	1.7	11
134	Effect of oil viscosity on the rheology of oilâ€inâ€water emulsions with added solids. Canadian Journal of Chemical Engineering, 1993, 71, 852-858.	1.7	11
135	Role of Bicarbonate Ions in Oil Sands Extraction Systems with a Poor Processing Ore. Journal of Dispersion Science and Technology, 2009, 30, 809-822.	2.4	11
136	Stimuli-Responsive Hybrid Polymer for Enhanced Solid–Liquid Separation of Industrial Effluents. Environmental Science & Env	10.0	11
137	Viscous flow across banks of circular and elliptical cylinders: Momentum and heat transfer. Canadian Journal of Chemical Engineering, 1973, 51, 550-555.	1.7	10
138	Cell and surfactant separation by column flotation. Canadian Journal of Chemical Engineering, 1994, 72, 840-847.	1.7	10
139	A decoupling numerical method for fluid flow. International Journal for Numerical Methods in Fluids, 1993, 16, 659-682.	1.6	9
140	Continuous separation of suspensions containing light and heavy particle species. Canadian Journal of Chemical Engineering, 1999, 77, 1003-1012.	1.7	9
141	Bubble Size Distributions for Dispersed Air & Dispersed Rir & Romanner; 0150; Water Flows in a 100 mm Horizontal Pipeline. Canadian Journal of Chemical Engineering, 2004, 82, 858-864.	1.7	9
142	NUMERICAL SOLUTION OF HEAT AND MASS TRANSFER FROM SPHEROIDS IN STEADY AXISYMMETRIC FLOW. , 1972, , 613-632.		8
143	Free convection mass transfer: Laminar and turbulent. International Journal of Heat and Mass Transfer, 1975, 18, 1443-1447.	4.8	8
144	Experimental study of mass transfer due to an impinging rectangular jet. Canadian Journal of Chemical Engineering, 1977, 55, 156-160.	1.7	8

#	Article	IF	CITATIONS
145	A Novel Photometric Technique to Detect the Onset of Asphaltene Precipitation at Low Concentrations: The Effect of Maltenes and Water. Canadian Journal of Chemical Engineering, 2004, 82, 1089-1095.	1.7	8
146	Fluid flow and heat transfer in internally finned helical coils. Canadian Journal of Chemical Engineering, 1977, 55, 27-36.	1.7	7
147	Salt Rejection in a Sinusoidal Capillary Tube. Journal of Colloid and Interface Science, 1994, 166, 383-393.	9.4	7
148	Principles of Single-Phase Flow Through Porous Media. Advances in Chemistry Series, 1996, , 227-286.	0.6	7
149	A new pressure drop model for flowâ€through orifice plates. Canadian Journal of Chemical Engineering, 2001, 79, 100-106.	1.7	7
150	Preparation of Solid and Hollow Asphaltene Fibers by Single Step Electrospinning. Journal of Engineered Fibers and Fabrics, 2011, 6, 155892501100600.	1.0	7
151	Twoâ€phase laminar zero net flow in a circular inclined pipe. Canadian Journal of Chemical Engineering, 1978, 56, 165-175.	1.7	6
152	Friberg Correlations in Oil Recovery. Journal of Dispersion Science and Technology, 2006, 27, 625-633.	2.4	6
153	A New Device to Determine Bitumen Extraction from Oil Sands. Canadian Journal of Chemical Engineering, 2004, 82, 752-762.	1.7	6
154	Hydrogen and Oxygen Bubble Attachment to a Bitumen Drop. Canadian Journal of Chemical Engineering, 2008, 82, 846-849.	1.7	6
155	Heat and Mass Transfer from Elliptical Cylinders in Steady Symmetric Flow. Industrial & Engineering Chemistry Fundamentals, 1973, 12, 317-323.	0.7	5
156	Qualitative study in mass transfer by laser holography. Canadian Journal of Chemical Engineering, 1974, 52, 664-665.	1.7	4
157	Impingement of spherical particles on elliptical cylinders. Journal of Aerosol Science, 1975, 6, 31-43.	3.8	4
158	Heat transfer from a porous composite sphere immersed in a moving stream. International Journal of Heat and Mass Transfer, 1987, 30, 1445-1451.	4.8	4
159	A Visual Study of High Grade Oil Sand Disintegration Process. Journal of Colloid and Interface Science, 1998, 205, 201-203.	9.4	4
160	Hydrophobic Interactions in Silaneâ€Treated Silica Suspensions and Bitumen Emulsions. Canadian Journal of Chemical Engineering, 2003, 81, 43-52.	1.7	4
161	Aerosol removal by diffusion and interception in mats of elliptic fibres. Canadian Journal of Chemical Engineering, 1975, 53, 568-571.	1.7	3
162	Nonmonotonous variation of <scp>DNA</scp> angular separation during asymmetric pulsed field electrophoresis. Electrophoresis, 2013, 34, 2453-2463.	2.4	3

#	Article	IF	CITATIONS
163	Solidâ€liquid mass transfer in a rotary drum. Canadian Journal of Chemical Engineering, 2001, 79, 726-731.	1.7	2
164	Fibre fractionation using air-sparged hydrocyclone. Canadian Journal of Chemical Engineering, 2009, 87, 94-98.	1.7	2
165	Heat transfer mechanism in recirculating wakes. International Journal of Heat and Mass Transfer, 1971, 14, 2164-2165.	4.8	1
166	Coherent optical measurement techniques in profilometric determination of local mass transfer coefficients. Optics and Lasers in Engineering, 1984, 5, 211-229.	3.8	1
167	FULLY DEVELOPED LAMINAR FLOW IN A HELICAL TUBE OF FINITE PITCH. Chemical Engineering Communications, 1984, 29, 125-138.	2.6	1
168	Ablation of iceâ€solids and waxâ€solids mixtures in turbulent axisymmetric water jets. Canadian Journal of Chemical Engineering, 1987, 65, 420-429.	1.7	1
169	Chemical engineering research in pulp and paper introduction and overview. Canadian Journal of Chemical Engineering, 1997, 75, 5-7.	1.7	0
170	Fractionation of nylon fibres using a vertical settler. Canadian Journal of Chemical Engineering, 2000, 78, 194-204.	1.7	0
171	Effect of Dispersion on Particle Segregation Due to Sparged Air in a Hydrocyclone. Canadian Journal of Chemical Engineering, 2003, 81, 549-556.	1.7	O
172	Electroosmotic Dispersion in Micro-Channels and its Implications. , 2010, , .		0