Mark Kindy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11253411/publications.pdf

Version: 2024-02-01

15 papers	2,789 citations	15 h-index	996975 15 g-index
15	15	15	3686
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	RAGE mediates amyloid- \hat{l}^2 peptide transport across the blood-brain barrier and accumulation in brain. Nature Medicine, 2003, 9, 907-913.	30.7	1,277
2	RAGE potentiates $\hat{Al^2}$ -induced perturbation of neuronal function in transgenic mice. EMBO Journal, 2004, 23, 4096-4105.	7.8	311
3	Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nature Medicine, 2000, 6, 643-651.	30.7	303
4	Inhibitors of Cathepsin B Improve Memory and Reduce \hat{l}^2 -Amyloid in Transgenic Alzheimer Disease Mice Expressing the Wild-type, but Not the Swedish Mutant, \hat{l}^2 -Secretase Site of the Amyloid Precursor Protein. Journal of Biological Chemistry, 2008, 283, 7745-7753.	3.4	185
5	Neprilysin Regulates Amyloid Î ² Peptide Levels. Journal of Molecular Neuroscience, 2004, 22, 5-12.	2.3	141
6	Genetic cathepsin B deficiency reduces \hat{l}^2 -amyloid in transgenic mice expressing human wild-type amyloid precursor protein. Biochemical and Biophysical Research Communications, 2009, 386, 284-288.	2.1	97
7	The Cysteine Protease Inhibitor, E64d, Reduces Brain Amyloid- \hat{l}^2 and Improves Memory Deficits in Alzheimer's Disease Animal Models by Inhibiting Cathepsin B, but not BACE1, \hat{l}^2 -Secretase Activity. Journal of Alzheimer's Disease, 2011, 26, 387-408.	2.6	92
8	Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate. Frontiers in Neurology, 2015, 6, 178.	2.4	76
9	Brain Pyroglutamate Amyloid- \hat{l}^2 is Produced by Cathepsin B and is Reduced by the Cysteine Protease Inhibitor E64d, Representing a Potential Alzheimer's Disease Therapeutic. Journal of Alzheimer's Disease, 2014, 41, 129-149.	2.6	73
10	Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 89-104.	2.3	67
11	Cysteine protease inhibitors effectively reduce in vivo levels of brain \hat{l}^2 -amyloid related to Alzheimer's disease. Biological Chemistry, 2007, 388, 247-52.	2.5	43
12	Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce \hat{l}^2 -amyloid related to Alzheimer's disease. Biological Chemistry, 2010, 391, 861-72.	2.5	42
13	Cysteine protease inhibitors reduce brain \hat{l}^2 -amyloid and \hat{l}^2 -secretase activity $\langle i \rangle$ in vivo $\langle i \rangle$ and are potential Alzheimer's disease therapeutics. Biological Chemistry, 2007, 388, 979-983.	2.5	38
14	Cathepsin B Gene Knockout Improves Behavioral Deficits and Reduces Pathology in Models of Neurologic Disorders. Pharmacological Reviews, 2022, 74, 600-629.	16.0	29
15	Key signaling pathways regulate the biological activities and accumulation of amyloid- $ ilde{A}\check{Z}\hat{A}^2$. Neurobiology of Aging, 2001, 22, 967-973.	3.1	15