Michael P Cummings

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11249508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology, 2012, 61, 170-173.	5.6	555
2	Independent Emergence of Artemisinin Resistance Mutations Among Plasmodium falciparum in Southeast Asia. Journal of Infectious Diseases, 2015, 211, 670-679.	4.0	368
3	Comparing Bootstrap and Posterior Probability Values in the Four-Taxon Case. Systematic Biology, 2003, 52, 477-487.	5.6	277

A Large-Scale, Higher-Level, Molecular Phylogenetic Study of the Insect Order Lepidoptera (Moths and) Tj ETQq0 0 0.9 gBT /Overlock 10 2.53

5	Genetic loci associated with delayed clearance of <i>Plasmodium falciparum</i> following artemisinin treatment in Southeast Asia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 240-245.	7.1	242
6	A GENEALOGICAL APPROACH TO QUANTIFYING LINEAGE DIVERGENCE. Evolution; International Journal of Organic Evolution, 2008, 62, 2411-2422.	2.3	203
7	Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evolutionary Biology, 2009, 9, 280.	3.2	202
8	A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0. Systematic Biology, 2014, 63, 812-818.	5.6	195
9	Phylogeny and Evolution of Lepidoptera. Annual Review of Entomology, 2017, 62, 265-283.	11.8	188
10	Resolving Arthropod Phylogeny: Exploring Phylogenetic Signal within 41 kb of Protein-Coding Nuclear Gene Sequence. Systematic Biology, 2008, 57, 920-938.	5.6	178
11	Extreme Polymorphism in a Vaccine Antigen and Risk of Clinical Malaria: Implications for Vaccine Development. Science Translational Medicine, 2009, 1, 2ra5.	12.4	154
12	BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology, 2019, 68, 1052-1061.	5.6	139
13	Phylogenetic Relationships of Acanthocephala Based on Analysis of 18S Ribosomal RNA Gene Sequences. Journal of Molecular Evolution, 2000, 50, 532-540.	1.8	116
14	Association of a Novel Mutation in the Plasmodium falciparum Chloroquine Resistance Transporter With Decreased Piperaquine Sensitivity. Journal of Infectious Diseases, 2017, 216, 468-476.	4.0	102
15	Biased data reduce efficiency and effectiveness of conservation reserve networks. Ecology Letters, 2007, 10, 364-374.	6.4	100
16	A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higherâ€level classification. Systematic Entomology, 2012, 37, 635-656.	3.9	96
17	Can RNA-Seq Resolve the Rapid Radiation of Advanced Moths and Butterflies (Hexapoda: Lepidoptera:) Tj ETQq1 I	1 0.78431 2.5	4 rgBT /Ov
18	Can Deliberately Incomplete Gene Sample Augmentation Improve a Phylogeny Estimate for the Advanced Moths and Butterflies (Hexapoda: Lepidoptera)?. Systematic Biology, 2011, 60, 782-796.	5.6	87

MICHAEL P CUMMINGS

#	Article	IF	CITATIONS
19	Increased gene sampling yields robust support for higherâ€level clades within Bombycoidea (Lepidoptera). Systematic Entomology, 2011, 36, 31-43.	3.9	83
20	A molecular phylogeny for the oldest (nonditrysian) lineages of extant <scp>L</scp> epidoptera, with implications for classification, comparative morphology and lifeâ€history evolution. Systematic Entomology, 2015, 40, 671-704.	3.9	82
21	Phylogenetic relationships of Phytophthora species based on ribosomal ITS I DNA sequence analysis with emphasis on Waterhouse groups V and VI. Mycological Research, 2000, 104, 1055-1061.	2.5	80
22	Effectiveness of Conservation Targets in Capturing Genetic Diversity. Conservation Biology, 2003, 17, 219-229.	4.7	76
23	A Molecular Phylogeny for the Leaf-Roller Moths (Lepidoptera: Tortricidae) and Its Implications for Classification and Life History Evolution. PLoS ONE, 2012, 7, e35574.	2.5	71
24	A Molecular Phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and Its Implications for Classification, Biogeography and the Evolution of Host Plant Use. PLoS ONE, 2013, 8, e55066.	2.5	70
25	Phylogenetic analysis based on 18S ribosomal RNA gene sequences supports the existence of class polyacanthocephala (acanthocephala). Molecular Phylogenetics and Evolution, 2002, 23, 288-292.	2.7	67
26	Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms. Current Genetics, 2003, 43, 131-138.	1.7	65
27	Phylogenetic Relationships of Platyhelminthes Based on 18S Ribosomal Gene Sequences. Molecular Phylogenetics and Evolution, 1998, 10, 1-10.	2.7	63
28	A Case for Evolutionary Genomics and the Comprehensive Examination of Sequence Biodiversity. Molecular Biology and Evolution, 2000, 17, 1776-1788.	8.9	63
29	Further progress on the phylogeny of <scp>N</scp> octuoidea (<scp>I</scp> nsecta:) Tj ETQq1 1 0.784314 rgBT	/Oyerlock	107f 50 342
30	Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evolutionary Biology, 2017, 17, 221.	3.2	53
31	Increased gene sampling strengthens support for higher-level groups within leaf-mining moths and relatives (Lepidoptera: Gracillariidae). BMC Evolutionary Biology, 2011, 11, 182.	3.2	52
32	A molecular phylogeny and revised classification for the oldest ditrysian moth lineages (<scp>L</scp> epidoptera: <scp>T</scp> ineoidea), with implications for ancestral feeding habits of the megaâ€diverse <scp>D</scp> itrysia. Systematic Entomology, 2015, 40, 409-432.	3.9	52
33	Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1622-1625.	7.1	50
34	Relating Amino Acid Sequence to Phenotype: Analysis of Peptideâ€Binding Data. Biometrics, 2001, 57, 632-643.	1.4	48
35	Genetic consequences of ecological reserve design guidelines: An empirical investigation. Conservation Genetics, 2003, 4, 427-439.	1.5	44
36	Relationships within Cladobranchia (Gastropoda: Nudibranchia) based on RNA-Seq data: an initial investigation. Royal Society Open Science, 2015, 2, 150196.	2.4	44

MICHAEL P CUMMINGS

#	Article	IF	CITATIONS
37	Magic bullets and golden rules: Data sampling in molecular phylogenetics. Zoology, 2005, 108, 329-336.	1.2	43
38	Broader incorporation of bioinformatics in education: opportunities and challenges. Briefings in Bioinformatics, 2010, 11, 537-543.	6.5	43
39	Grid Services Base Library: A high-level, procedural application programming interface for writing Globus-based Grid services. Future Generation Computer Systems, 2007, 23, 517-522.	7.5	42
40	Phylogeny and feeding trait evolution of the megaâ€diverse Gelechioidea (Lepidoptera: Obtectomera): new insight from 19 nuclear genes. Systematic Entomology, 2016, 41, 112-132.	3.9	39
41	Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Systematic Entomology, 2017, 42, 305-316.	3.9	38
42	Simple statistical models predict C-to-U edited sites in plant mitochondrial RNA. BMC Bioinformatics, 2004, 5, 132.	2.6	37
43	Necessity is the mother of invention: a simple grid computing system using commodity tools. Journal of Parallel and Distributed Computing, 2003, 63, 578-589.	4.1	35
44	Bio-STEER: A Semantic Web workflow tool for Grid computing in the life sciences. Future Generation Computer Systems, 2007, 23, 497-509.	7.5	34
45	DNA SEQUENCE VARIATION IN THE RIBOSOMAL INTERNAL TRANSCRIBED SPACER REGION OF FRESHWATER CLADOPHORA SPECIES (CHLOROPHYTA)1. Journal of Phycology, 1996, 32, 1035-1042.	2.3	33
46	Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda:) Tj ETQq0 0 0 rgBT /Over	rlock 10 T 2.0	f 50 ₃ 382 Td (H
47	Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads. Microbiome, 2017, 5, 11.	11.1	31
48	Pigment composition of putatively achlorophyllous angiosperms. Plant Systematics and Evolution, 1998, 210, 105-111.	0.9	29
49	Computing the Tree of Life: Leveraging the Power of Desktop and Service Grids. , 2011, , .		29
50	Few amino acid positions in rpoB are associated with most of the rifampin resistance in Mycobacterium tuberculosis. BMC Bioinformatics, 2004, 5, 137.	2.6	19
51	A Molecular Footprint of Limb Loss: Sequence Variation of the Autopodial Identity Gene Hoxa-13. Journal of Molecular Evolution, 2008, 67, 581-593.	1.8	18
52	Plasmodium falciparum field isolates from areas of repeated emergence of drug resistant malaria show no evidence of hypermutator phenotype. Infection, Genetics and Evolution, 2015, 30, 318-322.	2.3	18
53	Section-level relationships of North American Agalinis (Orobanchaceae) based on DNA sequence analysis of three chloroplast gene regions. BMC Evolutionary Biology, 2004, 4, 15.	3.2	16
54	A critical assessment of gene catalogs for metagenomic analysis. Bioinformatics, 2021, 37, 2848-2857.	4.1	15

#	Article	IF	CITATIONS
55	Subdividing Long-Running, Variable-Length Analyses Into Short, Fixed-Length BOINC Workunits. Journal of Grid Computing, 2016, 14, 429-441.	3.9	9
56	Validating the systematic position of Plationus Segers, Murugan & Dumont, 1993 (Rotifera:) Tj ETQqO 0 0 rg C oxidase. Hydrobiologia, 2010, 644, 361-370.	gBT /Overl 2.0	ock 10 Tf 50 7
57	Heterogeneous Hardware Support in BEAGLE, a High-Performance Computing Library for Statistical Phylogenetics. , 2017, , .		6
58	Configuring Concurrent Computation of Phylogenetic Partial Likelihoods: Accelerating Analyses Using the BEAGLE Library. Lecture Notes in Computer Science, 2017, , 533-547.	1.3	6
59	Rerooting Trees Increases Opportunities for Concurrent Computation and Results in Markedly Improved Performance for Phylogenetic Inference. , 2018, , .		2