Anna M Karydas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11248961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration. Nature Medicine, 2020, 26, 387-397.	30.7	471
2	Incidence and impact of subclinical epileptiform activity in Alzheimer's disease. Annals of Neurology, 2016, 80, 858-870.	5.3	373
3	Clinicopathological correlations in corticobasal degeneration. Annals of Neurology, 2011, 70, 327-340.	5.3	367
4	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
5	Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer's disease. FASEB Journal, 2016, 30, 4141-4148.	0.5	281
6	Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurology, The, 2007, 6, 857-868.	10.2	199
7	Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Human Molecular Genetics, 2012, 21, 3500-3512.	2.9	198
8	Atypical, slowly progressive behavioural variant frontotemporal dementia associated with <i>C9ORF72</i> hexanucleotide expansion. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 358-364.	1.9	172
9	Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. Brain, 2014, 137, 3047-3060.	7.6	140
10	TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathologica, 2014, 127, 397-406.	7.7	133
11	Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers. NeuroImage: Clinical, 2017, 14, 286-297.	2.7	129
12	Distinct Subtypes of Behavioral Variant Frontotemporal Dementia Based on Patterns of Network Degeneration. JAMA Neurology, 2016, 73, 1078.	9.0	115
13	Comorbid neuropathological diagnoses in early versus late-onset Alzheimer's disease. Brain, 2021, 144, 2186-2198.	7.6	100
14	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
15	Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathologica, 2019, 137, 879-899.	7.7	90
16	Patient-Tailored, Connectivity-Based Forecasts of Spreading Brain Atrophy. Neuron, 2019, 104, 856-868.e5.	8.1	85
17	Ataxin-2 as potential disease modifier in C9ORF72 expansion carriers. Neurobiology of Aging, 2014, 35, 2421.e13-2421.e17.	3.1	74
18	Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene. Molecular Neurodegeneration, 2014, 9, 38.	10.8	63

ANNA M KARYDAS

#	Article	IF	CITATIONS
19	Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration. Neurology, 2021, 96, e2296-e2312.	1.1	52
20	Non-coding and Loss-of-Function Coding Variants in TET2 are Associated with Multiple Neurodegenerative Diseases. American Journal of Human Genetics, 2020, 106, 632-645.	6.2	50
21	Poly(GP), neurofilament and grey matter deficits in <i>C9orf72</i> expansion carriers. Annals of Clinical and Translational Neurology, 2018, 5, 583-597.	3.7	48
22	Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2849-E2858.	7.1	47
23	Clinicopathological Study of Patients With <i>C9ORF72</i> -Associated Frontotemporal Dementia Presenting With Delusions. Journal of Geriatric Psychiatry and Neurology, 2015, 28, 99-107.	2.3	41
24	Neurodegenerative Disease Phenotypes in Carriers of MAPT p.A152T, A Risk Factor for Frontotemporal Dementia Spectrum Disorders and Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2013, 27, 302-309.	1.3	40
25	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
26	A Multiancestral Genome-Wide Exome Array Study of Alzheimer Disease, Frontotemporal Dementia, and Progressive Supranuclear Palsy. JAMA Neurology, 2015, 72, 414.	9.0	37
27	Genetic counseling for FTD/ALS caused by the C9ORF72 hexanucleotide expansion. Alzheimer's Research and Therapy, 2012, 4, 27.	6.2	35
28	Frontotemporal Dementia and Psychiatric Illness: Emerging Clinical and Biological Links in Gene Carriers. American Journal of Geriatric Psychiatry, 2016, 24, 107-116.	1.2	32
29	Genetic screen in a large series of patients with primary progressive aphasia. Alzheimer's and Dementia, 2019, 15, 553-560.	0.8	30
30	Thalamo-cortical network hyperconnectivity in preclinical progranulin mutation carriers. NeuroImage: Clinical, 2019, 22, 101751.	2.7	30
31	Clinical and volumetric changes with increasing functional impairment in familial frontotemporal lobar degeneration. Alzheimer's and Dementia, 2020, 16, 49-59.	0.8	27
32	Schizophrenia or Neurodegenerative Disease Prodrome? Outcome of a First Psychotic Episode in a 35-Year-Old Woman. Psychosomatics, 2012, 53, 280-284.	2.5	24
33	Progranulin levels in blood in Alzheimer's disease and mild cognitive impairment. Annals of Clinical and Translational Neurology, 2018, 5, 616-629.	3.7	23
34	Brain volumetric deficits in <i>MAPT</i> mutation carriers: a multisite study. Annals of Clinical and Translational Neurology, 2021, 8, 95-110.	3.7	21
35	Tracking white matter degeneration in asymptomatic and symptomatic MAPT mutation carriers. Neurobiology of Aging, 2019, 83, 54-62.	3.1	14
36	Genetic Prion Disease Caused by PRNP Q160X Mutation Presenting with an Orbitofrontal Syndrome, Cyclic Diarrhea, and Peripheral Neuropathy. Journal of Alzheimer's Disease, 2016, 55, 249-258.	2.6	13

Anna M Karydas

#	Article	IF	CITATIONS
37	Linking tuberous sclerosis complex, excessive mTOR signaling, and age-related neurodegeneration: a new association between TSC1 mutation and frontotemporal dementia. Acta Neuropathologica, 2017, 134, 813-816.	7.7	11
38	Lack of Association Between the CCR5-delta32 Polymorphism and Neurodegenerative Disorders. Alzheimer Disease and Associated Disorders, 2020, 34, 244-247.	1.3	11
39	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10
40	Elevated levels of extracellular vesicles in progranulinâ€deficient mice and FTDâ€ <i>GRN</i> Patients. Annals of Clinical and Translational Neurology, 2020, 7, 2433-2449.	3.7	8
41	Frequency of the TREM2 R47H Variant in Various Neurodegenerative Disorders. Alzheimer Disease and Associated Disorders, 2019, 33, 327-330.	1.3	6
42	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
43	Patient-Tailored, Connectivity-Based Forecasts of Spreading Brain Atrophy. SSRN Electronic Journal, 0,	0.4	1