
William E Dietrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11245290/publications.pdf Version: 2024-02-01

WILLIAM F DIFTRICH

#	Article	IF	CITATIONS
1	Multicriteria analysis on rock moisture and streamflow in a rainfallâ€runoff model improves accuracy of model results. Hydrological Processes, 2022, 36, .	2.6	1
2	Orbital and In‣itu Investigation of Periodic Bedrock Ridges in Glen Torridon, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	18
3	Controls on the size distributions of shallow landslides. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
4	The Relationship Between Topography, Bedrock Weathering, and Water Storage Across a Sequence of Ridges and Valleys. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005848.	2.8	13
5	Inverted channel variations identified on a distal portion of a bajada in the central Atacama Desert, Chile. Geomorphology, 2021, 393, 107925.	2.6	6
6	Chemical reactions, porosity, and microfracturing in shale during weathering: The effect of erosion rate. Geochimica Et Cosmochimica Acta, 2020, 269, 63-100.	3.9	68
7	Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars. Icarus, 2020, 350, 113897.	2.5	11
8	Lithologically Controlled Subsurface Critical Zone Thickness and Water Storage Capacity Determine Regional Plant Community Composition. Water Resources Research, 2019, 55, 3028-3055.	4.2	97
9	Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2664-2669.	7.1	231
10	Controls on the distribution and resilience of Quercus garryana : ecophysiological evidence of oak's waterâ€limitation tolerance. Ecosphere, 2018, 9, e02218.	2.2	25
11	Quantification of the seasonal hillslope water storage that does not drive streamflow. Hydrological Processes, 2018, 32, 1978-1992.	2.6	66
12	Controls on solute concentrationâ€discharge relationships revealed by simultaneous hydrochemistry observations of hillslope runoff and stream flow: The importance of critical zone structure. Water Resources Research, 2017, 53, 1424-1443.	4.2	74
13	The frontier beneath our feet. Water Resources Research, 2017, 53, 2605-2609.	4.2	90
14	Seasonal shifts in the solute ion ratios of vadose zone rock moisture from the Eel River Critical Zone Observatory. Acta Geochimica, 2017, 36, 385-388.	1.7	13
15	Expanding the role of reactive transport models in critical zone processes. Earth-Science Reviews, 2017, 165, 280-301.	9.1	207
16	Sequence and relative timing of large lakes in Gale crater (Mars) after the formation of Mount Sharp. Journal of Geophysical Research E: Planets, 2016, 121, 472-496.	3.6	72
17	Dynamic, structured heterogeneity of water isotopes inside hillslopes. Water Resources Research, 2016, 52, 164-189.	4.2	83
18	Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows. Journal of Geophysical Research F: Earth Surface, 2016, 121, 415-441.	2.8	97

#	Article	IF	CITATIONS
19	Coevolution of bed surface patchiness and channel morphology: 1. Mechanisms of forced patch formation. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1687-1707.	2.8	22
20	Coevolution of bed surface patchiness and channel morphology: 2. Numerical experiments. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1708-1723.	2.8	15
21	Predicting shallow landslide size and location across a natural landscape: Application of a spectral clustering search algorithm. Journal of Geophysical Research F: Earth Surface, 2015, 120, 2552-2585.	2.8	28
22	The Landscape Evolution Observatory: A large-scale controllable infrastructure to study coupled Earth-surface processes. Geomorphology, 2015, 244, 190-203.	2.6	47
23	Hillslope soils and vegetation. Geomorphology, 2015, 234, 122-132.	2.6	94
24	A spectral clustering search algorithm for predicting shallow landslide size and location. Journal of Geophysical Research F: Earth Surface, 2015, 120, 300-324.	2.8	38
25	The origin and evolution of the Peace Vallis fan system that drains to the <i>Curiosity</i> landing area, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 705-728.	3.6	112
26	A multidimensional stability model for predicting shallow landslide size and shape across landscapes. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2481-2504.	2.8	98
27	A bottom-up control on fresh-bedrock topography under landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6576-6581.	7.1	205
28	Vegetation induced changes in the stable isotope composition of near surface humidity. Ecohydrology, 2014, 7, 936-949.	2.4	42
29	Delineation of river bed-surface patches by clustering high-resolution spatial grain size data. Geomorphology, 2014, 205, 102-119.	2.6	42
30	Howard Receives 2013 G. K. Gilbert Award: Citation. Eos, 2014, 95, 344-344.	0.1	0
31	Continental-scale relationship between bankfull width and drainage area for single-thread alluvial channels. Water Resources Research, 2014, 50, 919-936.	4.2	21
32	Influence of bed patchiness, slope, grain hiding, and form drag on gravel mobilization in very steep streams. Journal of Geophysical Research F: Earth Surface, 2013, 118, 982-1001.	2.8	48
33	Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope. Water Resources Research, 2012, 48, .	4.2	124
34	Localized precipitation and runoff on Mars. Journal of Geophysical Research, 2011, 116, .	3.3	31
35	Chaos terrain, storms, and past climate on Mars. Journal of Geophysical Research, 2011, 116, .	3.3	13
36	Dietrich receives 2010 G. K. Gilbert Award: Response. Eos, 2011, 92, 205-205.	0.1	0

3

#	Article	IF	CITATIONS
37	The sensitivity of hillslope bedrock erosion to precipitation. Earth Surface Processes and Landforms, 2011, 36, 117-135.	2.5	89
38	A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical Research, 2010, 115, .	3.3	183
39	William E. Dietrich Receives 2009 Robert E. Horton Medal. Eos, 2010, 91, 47-47.	0.1	0
40	Morphodynamics of subaqueous levee formation: Insights into river mouth morphologies arising from experiments. Journal of Geophysical Research, 2010, 115, .	3.3	44
41	Bed topography and the development of forced bed surface patches. Journal of Geophysical Research, 2010, 115, .	3.3	54
42	Influence of rock mass strength on the erosion rate of alpine cliffs. Earth Surface Processes and Landforms, 2009, 34, 1339-1352.	2.5	110
43	Formation of evenly spaced ridges and valleys. Nature, 2009, 460, 502-505.	27.8	237
44	Statistical description of slopeâ€dependent soil transport and the diffusionâ€like coefficient. Journal of Geophysical Research, 2009, 114, .	3.3	68
45	Managing reservoir sediment release in dam removal projects: An approach informed by physical and numerical modelling of nonâ€cohesive sediment. International Journal of River Basin Management, 2009, 7, 433-452.	2.7	40
46	Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability. Journal of Geophysical Research, 2009, 114, .	3.3	66
47	Response of bed surface patchiness to reductions in sediment supply. Journal of Geophysical Research, 2009, 114, .	3.3	116
48	Translation and dispersion of sediment pulses in flume experiments simulating gravel augmentation below dams. Water Resources Research, 2009, 45, .	4.2	99
49	Turbulent characteristics of a shallow wall-bounded plane jet: experimental implications for river mouth hydrodynamics. Journal of Fluid Mechanics, 2009, 627, 423-449.	3.4	50
50	Implications of the saltation–abrasion bedrock incision model for steadyâ€state river longitudinal profile relief and concavity. Earth Surface Processes and Landforms, 2008, 33, 1129-1151.	2.5	82
51	Unravelling the conundrum of river response to rising seaâ€level from laboratory to field. Part I: Laboratory experiments. Sedimentology, 2008, 55, 1643-1655.	3.1	41
52	Unravelling the conundrum of river response to rising seaâ€level from laboratory to field. Part II. The Fly–Strickland River system, Papua New Guinea. Sedimentology, 2008, 55, 1657-1686.	3.1	64
53	The depositional web on the floodplain of the Fly River, Papua New Guinea. Journal of Geophysical Research, 2008, 113, .	3.3	82
54	Sediment load and floodplain deposition rates: Comparison of the Fly and Strickland rivers, Papua New Guinea. Journal of Geophysical Research, 2008, 113, .	3.3	45

#	Article	IF	CITATIONS
55	Biogeochemical characterization of carbon sources in the Strickland and Fly rivers, Papua New Guinea. Journal of Geophysical Research, 2008, 113, .	3.3	68
56	Response of the Strickland and Fly River confluence to postglacial sea level rise. Journal of Geophysical Research, 2008, 113, .	3.3	19
57	Spatial and temporal dynamics of sediment accumulation and exchange along Strickland River floodplains (Papua New Guinea) over decadalâ€ŧoâ€centennial timescales. Journal of Geophysical Research, 2008, 113, .	3.3	97
58	Sediment supply and relative size distribution effects on fine sediment infiltration into immobile gravels. Water Resources Research, 2008, 44, .	4.2	99
59	Experimental study of bedrock erosion by granular flows. Journal of Geophysical Research, 2008, 113, .	3.3	51
60	Is the critical Shields stress for incipient sediment motion dependent on channelâ€bed slope?. Journal of Geophysical Research, 2008, 113, .	3.3	364
61	Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. Journal of Geophysical Research, 2008, 113, .	3.3	153
62	A model for fluvial bedrock incision by impacting suspended and bed load sediment. Journal of Geophysical Research, 2008, 113, .	3.3	186
63	Controls on the spacing of firstâ€order valleys. Journal of Geophysical Research, 2008, 113, .	3.3	182
64	Physicsâ€based continuous simulation of longâ€term nearâ€surface hydrologic response for the Coos Bay experimental catchment. Water Resources Research, 2008, 44, .	4.2	85
65	Quantitative linkages among sediment supply, streambed fine sediment, and benthic macroinvertebrates in northern California streams. Journal of the North American Benthological Society, 2008, 27, 135-149.	3.1	31
66	Simulating Sediment Transport in a Flume with Forced Pool-Riffle Morphology: Examinations of Two One-Dimensional Numerical Models. Journal of Hydraulic Engineering, 2008, 134, 892-904.	1.5	19
67	SEASONAL REASSEMBLY OF A RIVER FOOD WEB: FLOODS, DROUGHTS, AND IMPACTS OF FISH. Ecological Monographs, 2008, 78, 263-282.	5.4	242
68	Integration of geochemical mass balance with sediment transport to calculate rates of soil chemical weathering and transport on hillslopes. Journal of Geophysical Research, 2007, 112, .	3.3	112
69	Physical basis for quasiâ€universal relations describing bankfull hydraulic geometry of singleâ€thread gravel bed rivers. Journal of Geophysical Research, 2007, 112, .	3.3	342
70	Channel network extraction from high resolution topography using wavelets. Geophysical Research Letters, 2007, 34, .	4.0	166
71	Upscaling river biomass using dimensional analysis and hydrogeomorphic scaling. Geophysical Research Letters, 2007, 34, .	4.0	7
72	Can springs cut canyons into rock?. Journal of Geophysical Research, 2006, 111, .	3.3	153

#	Article	IF	CITATIONS
73	Toward a unified science of the Earth's surface: Opportunities for synthesis among hydrology, geochemistry, and ecology. Water Resources Research, 2006, 42, .	4.2	83
74	Do gravel bed river size distributions record channel network structure?. Water Resources Research, 2006, 42, .	4.2	67
75	Quantification of chemical weathering rates across an actively eroding hillslope. Earth and Planetary Science Letters, 2006, 242, 155-169.	4.4	90
76	Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma, 2006, 130, 47-65.	5.1	199
77	The role of sediment in controlling steady-state bedrock channel slope: Implications of the saltation–abrasion incision model. Geomorphology, 2006, 82, 58-83.	2.6	173
78	The search for a topographic signature of life. Nature, 2006, 439, 411-418.	27.8	352
79	Dam Removal Express Assessment Models (DREAM). Journal of Hydraulic Research/De Recherches Hydrauliques, 2006, 44, 308-323.	1.7	45
80	Dam Removal Express Assessment Models (DREAM) Journal of Hydraulic Research/De Recherches Hydrauliques, 2006, 44, 291-307.	1.7	112
81	Tie channel sedimentation rates, oxbow formation age and channel migration rate from optically stimulated luminescence (OSL) analysis of floodplain deposits. Earth Surface Processes and Landforms, 2005, 30, 1161-1179.	2.5	96
82	Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows. Bulletin of the Geological Society of America, 2005, 117, 174.	3.3	130
83	Characterizing structural and lithologic controls on deep-seated landsliding: Implications for topographic relief and landscape evolution in the Oregon Coast Range, USA. Bulletin of the Geological Society of America, 2005, 117, 654.	3.3	120
84	Process-based model linking pocket gopher (Thomomys bottae) activity to sediment transport and soil thickness. Geology, 2005, 33, 917.	4.4	112
85	The illusion of diffusion: Field evidence for depth-dependent sediment transport. Geology, 2005, 33, 949.	4.4	154
86	Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model. Global Biogeochemical Cycles, 2005, 19, .	4.9	103
87	Contrasting effects of soil development on hydrological properties and flow paths. Water Resources Research, 2005, 41, .	4.2	103
88	A mechanistic model for river incision into bedrock by saltating bed load. Water Resources Research, 2004, 40, .	4.2	560
89	Reply to comment by Richard M. Iverson on "Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding― Water Resources Research, 2004, 40, .	4.2	7
90	Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Canadian Geotechnical Journal, 2003, 40, 237-253.	2.8	231

#	Article	IF	CITATIONS
91	Ice-driven creep on Martian debris slopes. Geophysical Research Letters, 2003, 30, .	4.0	28
92	Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment. Bulletin of the Geological Society of America, 2002, 114, 1143-1158.	3.3	367
93	Runoff generation in a steep, soil-mantled landscape. Water Resources Research, 2002, 38, 7-1-7-8.	4.2	101
94	Piezometric response in shallow bedrock at CB1: Implications for runoff generation and landsliding. Water Resources Research, 2002, 38, 10-1-10-18.	4.2	112
95	Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales. Journal of Geophysical Research, 2001, 106, 16499-16513.	3.3	185
96	Late Quaternary erosion in southeastern Australia: a field example using cosmogenic nuclides. Quaternary International, 2001, 83-85, 169-185.	1.5	164
97	Sediment and rock strength controls on river incision into bedrock. Geology, 2001, 29, 1087.	4.4	633
98	Validation of the Shallow Landslide Model, SHALSTAB, for forest management. Water Science and Application, 2001, , 195-227.	0.3	91
99	Stochastic processes of soil production and transport: erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range. Earth Surface Processes and Landforms, 2001, 26, 531-552.	2.5	247
100	Hillslope evolution by nonlinear creep and landsliding: An experimental study. Geology, 2001, 29, 143.	4.4	164
101	Soil production on a retreating escarpment in southeastern Australia. Geology, 2000, 28, 787.	4.4	223
102	Forest clearing and regional landsliding. Geology, 2000, 28, 311.	4.4	267
103	Cosmogenic nuclides, topography, and the spatial variation of soil depth. Geomorphology, 1999, 27, 151-172.	2.6	290
104	Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resources Research, 1999, 35, 3891-3904.	4.2	149
105	Tidal networks: 2. Watershed delineation and comparative network morphology. Water Resources Research, 1999, 35, 3905-3917.	4.2	171
106	Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resources Research, 1999, 35, 853-870.	4.2	553
107	Unsaturated zone processes and the hydrologic response of a steep, unchanneled catchment. Water Resources Research, 1998, 34, 1865-1879.	4.2	235
108	River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply. Geophysical Monograph Series, 1998, , 237-260.	0.1	336

#	Article	IF	CITATIONS
109	Hillslopes, Channels, and Landscape Scale. , 1998, , 30-60.		17
110	The soil production function and landscape equilibrium. Nature, 1997, 388, 358-361.	27.8	767
111	Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments. Water Resources Research, 1997, 33, 1307-1318.	4.2	228
112	Concentration-discharge relationships in runoff from a steep, unchanneled catchment. Water Resources Research, 1997, 33, 211-225.	4.2	131
113	Hydrologic response of a steep, unchanneled valley to natural and applied rainfall. Water Resources Research, 1997, 33, 91-109.	4.2	309
114	Cosmetic Isotope Analyses Applied to River Longitudinal Profile Evolution: Problems and Interpretations. Earth Surface Processes and Landforms, 1997, 22, 195-209.	2.5	53
115	Dams and downstream aquatic biodiversity: Potential food web consequences of hydrologic and geomorphic change. Environmental Management, 1996, 20, 887-895.	2.7	273
116	A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 1995, 9, 383-400.	2.6	529
117	Geomorphological signatures of varying climate. Nature, 1995, 374, 632-635.	27.8	188
118	Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology, 1995, 13, 71-86.	2.6	167
119	Downstream Ecological Effects of Dams. BioScience, 1995, 45, 183-192.	4.9	650
120	Hydrologic Processes in a Low-Gradient Source Area. Water Resources Research, 1995, 31, 1-10.	4.2	66
121	Field Experiments on Erosion by Overland Flow and Their Implication for a Digital Terrain Model of Channel Initiation. Water Resources Research, 1995, 31, 2867-2876.	4.2	77
122	Hydraulic Food-Chain Models. BioScience, 1995, 45, 159-167.	4.9	281
123	Flow resistance and sediment transport by concentrated overland flow in a grassland valley. , 1995, , 71-86.		11
124	A physically based model for the topographic control on shallow landsliding. Water Resources Research, 1994, 30, 1153-1171.	4.2	1,206
125	Modeling fluvial erosion on regional to continental scales. Journal of Geophysical Research, 1994, 99, 13971-13986.	3.3	641
126	Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile. Geology, 1993, 21, 343.	4.4	184

#	Article	IF	CITATIONS
127	Analysis of Erosion Thresholds, Channel Networks, and Landscape Morphology Using a Digital Terrain Model. Journal of Geology, 1993, 101, 259-278.	1.4	348
128	Erosion thresholds and land surface morphology. Geology, 1992, 20, 675.	4.4	237
129	Erosion rates in the southern oregon coast range: Evidence for an equilibrium between hillslope erosion and sediment yield. Earth Surface Processes and Landforms, 1991, 16, 307-322.	2.5	141
130	The variability of critical shear stress, friction angle, and grain protrusion in water-worked sediments. Sedimentology, 1990, 37, 647-672.	3.1	331
131	Hydrologic and erosional processes in hollows, Lone Tree Creek, Marin County, California. , 1989, , 74-89.		0
132	Trip log: Day 1 (July 1, 1989): Marin Headlands. , 1989, , 38-41.		0
133	Sediment supply and the development of the coarse surface layer in gravel-bedded rivers. Nature, 1989, 340, 215-217.	27.8	587
134	Source areas, drainage density, and channel initiation. Water Resources Research, 1989, 25, 1907-1918.	4.2	466
135	Boundary shear stress and sediment transport in river meanders of sand and gravel. Water Resources Monograph, 1989, , 1-50.	1.0	151
136	Analysis of Hillslope Erosion Rates Using Dated Colluvial Deposits. Journal of Geology, 1989, 97, 45-63.	1.4	69
137	Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature, 1988, 333, 819-824.	27.8	182
138	Where do channels begin?. Nature, 1988, 336, 232-234.	27.8	535
139	Bedload sheets in heterogeneous sediment. Geology, 1988, 16, 105.	4.4	203
140	Bedload transport of fine gravel observed by motion-picture photography. Journal of Fluid Mechanics, 1988, 192, 193-217.	3.4	374
141	The importance of hollows in debris flow studies; Examples from Marin County, California. Reviews in Engineering Geology, 1987, , 165-180.	0.1	67
142	Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochimica Et Cosmochimica Acta, 1987, 51, 567-587.	3.9	729
143	Geomorphic and paleoclimatic implications of latest Pleistocene radiocarbon dates from colluvium-mantled hollows, California. Geology, 1986, 14, 655.	4.4	57
144	Bed Load Transport in a River Meander. Water Resources Research, 1984, 20, 1355-1380.	4.2	243

#	Article	IF	CITATIONS
145	Settling velocity of natural particles. Water Resources Research, 1982, 18, 1615-1626.	4.2	787
146	When Models Meet Managers: Examples from Geomorphology. Geophysical Monograph Series, 0, , 27-40.	0.1	12
147	Geomorphic Transport Laws for Predicting Landscape form and Dynamics. Geophysical Monograph Series, 0, , 103-132.	0.1	234