Charles Antzelevitch, Facc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1124510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contemporary Definitions and Classification of the Cardiomyopathies. Circulation, 2006, 113, 1807-1816.	1.6	2,935
2	Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 1998, 392, 293-296.	13.7	1,734
3	Brugada Syndrome: Report of the Second Consensus Conference. Circulation, 2005, 111, 659-670.	1.6	1,639
4	Cellular Basis for the Brugada Syndrome and Other Mechanisms of Arrhythmogenesis Associated With ST-Segment Elevation. Circulation, 1999, 100, 1660-1666.	1.6	1,073
5	Cellular Basis for the Normal T Wave and the Electrocardiographic Manifestations of the Long-QT Syndrome. Circulation, 1998, 98, 1928-1936.	1.6	900
6	Loss-of-Function Mutations in the Cardiac Calcium Channel Underlie a New Clinical Entity Characterized by ST-Segment Elevation, Short QT Intervals, and Sudden Cardiac Death. Circulation, 2007, 115, 442-449.	1.6	864
7	Sudden Death Associated With Short-QT Syndrome Linked to Mutations in HERG. Circulation, 2004, 109, 30-35.	1.6	804
8	Proposed Diagnostic Criteria for the Brugada Syndrome. Circulation, 2002, 106, 2514-2519.	1.6	779
9	Sodium Channel Blockers Identify Risk for Sudden Death in Patients With ST-Segment Elevation and Right Bundle Branch Block but Structurally Normal Hearts. Circulation, 2000, 101, 510-515.	1.6	767
10	Cellular Basis for the Electrocardiographic J Wave. Circulation, 1996, 93, 372-379.	1.6	697
11	An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm, 2010, 7, 33-46.	0.3	649
12	Electrophysiological Effects of Ranolazine, a Novel Antianginal Agent With Antiarrhythmic Properties. Circulation, 2004, 110, 904-910.	1.6	638
13	Long-Term Follow-Up of Individuals With the Electrocardiographic Pattern of Right Bundle-Branch Block and ST-Segment Elevation in Precordial Leads V 1 to V 3. Circulation, 2002, 105, 73-78.	1.6	593
14	lonic Mechanisms Responsible for the Electrocardiographic Phenotype of the Brugada Syndrome Are Temperature Dependent. Circulation Research, 1999, 85, 803-809.	2.0	557
15	The M Cell: Journal of Cardiovascular Electrophysiology, 1999, 10, 1124-1152.	0.8	525
16	J wave syndromes. Heart Rhythm, 2010, 7, 549-558.	0.3	524
17	Characteristics of the Delayed Rectifier Current (I _{Kr} and I _{Ks}) in Canine Ventricular Epicardial, Midmyocardial, and Endocardial Myocytes. Circulation Research, 1995, 76, 351-365.	2.0	516
18	Cellular Basis for the ECG Features of the LQT1 Form of the Long-QT Syndrome. Circulation, 1998, 98, 2314-2322.	1.6	497

#	Article	IF	CITATIONS
19	The Brugada syndrome: clinical, electrophysiologic and genetic aspects. Journal of the American College of Cardiology, 1999, 33, 5-15.	1.2	481
20	Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Journal of the American College of Cardiology, 1994, 23, 259-277.	1.2	475
21	Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature Genetics, 2013, 45, 1044-1049.	9.4	467
22	Sodium Channel Block With Mexiletine Is Effective in Reducing Dispersion of Repolarization and Preventing Torsade de Pointes in LQT2 and LQT3 Models of the Long-QT Syndrome. Circulation, 1997, 96, 2038-2047.	1.6	449
23	Tpeak-Tend and Tpeak-Tend Dispersion as Risk Factors for Ventricular Tachycardia/Ventricular Fibrillation in Patients With the Brugada Syndrome. Journal of the American College of Cardiology, 2006, 47, 1828-1834.	1.2	437
24	Characteristics and Distribution of M Cells in Arterially Perfused Canine Left Ventricular Wedge Preparations. Circulation, 1998, 98, 1921-1927.	1.6	431
25	Brugada Syndrome: Report of the Second Consensus Conference. Heart Rhythm, 2005, 2, 429-440.	0.3	429
26	The Brugada Syndrome: Ionic Basis and Arrhythmia Mechanisms. Journal of Cardiovascular Electrophysiology, 2001, 12, 268-272.	0.8	391
27	Atrium-Selective Sodium Channel Block as a Strategy for Suppression of Atrial Fibrillation. Circulation, 2007, 116, 1449-1457.	1.6	390
28	Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm, 2010, 7, 1872-1882.	0.3	387
29	The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. European Heart Journal, 2000, 21, 1216-1231.	1.0	365
30	Differential effects of beta-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. Journal of the American College of Cardiology, 2000, 35, 778-786.	1.2	365
31	Short QT syndrome: pharmacological treatment. Journal of the American College of Cardiology, 2004, 43, 1494-1499.	1.2	362
32	Ionic and Cellular Basis for the Predominance of the Brugada Syndrome Phenotype in Males. Circulation, 2002, 106, 2004-2011.	1.6	352
33	A Molecular Link between the Sudden Infant Death Syndrome and the Long-QT Syndrome. New England Journal of Medicine, 2000, 343, 262-267.	13.9	340
34	Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Human Molecular Genetics, 2002, 11, 337-345.	1.4	334
35	Effect of Epicardial or Biventricular Pacing to Prolong QT Interval and Increase Transmural Dispersion of Repolarization. Circulation, 2003, 107, 740-746.	1.6	328
36	Early repolarization syndrome: Clinical characteristics and possible cellular and ionic mechanisms. Journal of Electrocardiology, 2000, 33, 299-309.	0.4	324

#	Article	IF	CITATIONS
37	The pathophysiological mechanism underlying Brugada syndrome. Journal of Molecular and Cellular Cardiology, 2010, 49, 543-553.	0.9	323
38	J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Heart Rhythm, 2016, 13, e295-e324.	0.3	322
39	Drug-Induced Torsades de Pointes and Implications for Drug Development. Journal of Cardiovascular Electrophysiology, 2004, 15, 475-495.	0.8	314
40	Brugada Syndrome. PACE - Pacing and Clinical Electrophysiology, 2006, 29, 1130-1159.	0.5	313
41	The Early Repolarization Pattern. Journal of the American College of Cardiology, 2015, 66, 470-477.	1.2	306
42	Electrical heterogeneity within the ventricular wall. Basic Research in Cardiology, 2001, 96, 517-527.	2.5	296
43	Cellular and Ionic Basis for T-Wave Alternans Under Long-QT Conditions. Circulation, 1999, 99, 1499-1507.	1.6	294
44	Reinduction of Atrial Fibrillation Immediately After Termination of the Arrhythmia Is Mediated by Late Phase 3 Early Afterdepolarization–Induced Triggered Activity. Circulation, 2003, 107, 2355-2360.	1.6	291
45	Functional Effects of <i>KCNE3</i> Mutation and Its Role in the Development of Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 209-218.	2.1	291
46	Assessing predictors of drug-induced torsade de pointes. Trends in Pharmacological Sciences, 2003, 24, 619-625.	4.0	277
47	Overview of Basic Mechanisms of Cardiac Arrhythmia. Cardiac Electrophysiology Clinics, 2011, 3, 23-45.	0.7	274
48	Augmentation of J Waves and Electrical Storms in Patients with Early Repolarization. New England Journal of Medicine, 2008, 358, 2078-2079.	13.9	271
49	Unique Topographical Distribution of M Cells Underlies Reentrant Mechanism of Torsade de Pointes in the Long-QT Syndrome. Circulation, 2002, 105, 1247-1253.	1.6	270
50	Cellular and Ionic Mechanisms Underlying Erythromycin-Induced Long QT Intervals and Torsade de Pointes. Journal of the American College of Cardiology, 1996, 28, 1836-1848.	1.2	266
51	Cellular mechanisms underlying the long QT syndrome. Current Opinion in Cardiology, 2002, 17, 43-51.	0.8	255
52	Does Tpeak–Tend provide an index of transmural dispersion of repolarization?. Heart Rhythm, 2007, 4, 1114-1116.	0.3	236
53	The Homeodomain Transcription Factor Irx5 Establishes the Mouse Cardiac Ventricular Repolarization Gradient. Cell, 2005, 123, 347-358.	13.5	233
54	A Mutation in the β3 Subunit of the Cardiac Sodium Channel Associated With Brugada ECG Phenotype. Circulation: Cardiovascular Genetics, 2009, 2, 270-278.	5.1	232

#	Article	IF	CITATIONS
55	Effect of Sodium Channel Blockers on ST Segment, QRS Duration, and Corrected QT Interval in Patients with Brugada Syndrome. Journal of Cardiovascular Electrophysiology, 2000, 11, 1320-1329.	0.8	228
56	Transient outward current (Ito) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. Heart Rhythm, 2011, 8, 1024-1032.	0.3	226
57	Cellular basis for QT dispersion. Journal of Electrocardiology, 1998, 30, 168-175.	0.4	225
58	Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2024-H2038.	1.5	214
59	Mutations in SCN10A Are Responsible for a Large Fraction of Cases of Brugada Syndrome. Journal of the American College of Cardiology, 2014, 64, 66-79.	1.2	212
60	Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm, 2011, 8, 1281-1290.	0.3	209
61	Epicardial Activation of Left Ventricular Wall Prolongs QT Interval and Transmural Dispersion of Repolarization. Circulation, 2004, 109, 2136-2142.	1.6	208
62	Programmed Ventricular Stimulation for Risk Stratification in the Brugada Syndrome. Circulation, 2016, 133, 622-630.	1.6	201
63	The Response of the QT Interval to the Brief Tachycardia Provoked by Standing. Journal of the American College of Cardiology, 2010, 55, 1955-1961.	1.2	198
64	Amplified Transmural Dispersion of Repolarization as the Basis for Arrhythmogenesis in a Canine Ventricular-Wedge Model of Short-QT Syndrome. Circulation, 2004, 110, 3661-3666.	1.6	197
65	Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H689-H697.	1.5	196
66	Further Insights into the Effect of Quinidine in Short QT Syndrome Caused by a Mutation in HERG. Journal of Cardiovascular Electrophysiology, 2005, 16, 54-58.	0.8	189
67	The Brugada Syndrome. Journal of Cardiovascular Electrophysiology, 1998, 9, 513-516.	0.8	187
68	Autonomic aspects of arrhythmogenesis: the enduring and the new. Current Opinion in Cardiology, 2004, 19, 2-11.	0.8	184
69	Intravenous drug challenge using flecainide and ajmaline in patients with Brugada syndrome. Heart Rhythm, 2005, 2, 254-260.	0.3	180
70	Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). European Heart Journal, 2011, 32, 1077-1088.	1.0	178
71	Effects of a K ⁺ Channel Opener to Reduce Transmural Dispersion of Repolarization and Prevent Torsade de Pointes in LQT1, LQT2, and LQT3 Models of the Long-QT Syndrome. Circulation, 2000, 102, 706-712.	1.6	177
72	Antiarrhythmic Effects of Ranolazine in a Guinea Pig in Vitro Model of Long-QT Syndrome. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 599-605.	1.3	177

#	Article	IF	CITATIONS
73	Mode of onset of ventricular fibrillation in patients with early repolarization pattern vs. Brugada syndrome. European Heart Journal, 2010, 31, 330-339.	1.0	177
74	Brugada syndrome: 1992–2002. Journal of the American College of Cardiology, 2003, 41, 1665-1671.	1.2	176
75	Transmural heterogeneity of calcium activity and mechanical function in the canine left ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1471-H1479.	1.5	173
76	J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Europace, 2017, 19, euw235.	0.7	172
77	Value of Electrocardiographic Parameters and Ajmaline Test in the Diagnosis of Brugada Syndrome Caused by SCN5A Mutations. Circulation, 2004, 110, 3023-3027.	1.6	163
78	Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm, 2005, 2, S9-S15.	0.3	163
79	Role of sodium and calcium channel block in unmasking the Brugada syndrome. Heart Rhythm, 2004, 1, 210-217.	0.3	162
80	Fever and Brugada Syndrome. PACE - Pacing and Clinical Electrophysiology, 2002, 25, 1537-1539.	0.5	156
81	Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm, 2012, 9, 548-555.	0.3	152
82	Rate dependence of action potential duration and refractoriness in canine ventricular endocardium differs from that of epicardium: Role of the transient outward current. Journal of the American College of Cardiology, 1989, 14, 1053-1066.	1.2	150
83	Transmural Heterogeneity of Ventricular Repolarization Under Baseline and Long QT Conditions in the Canine Heart In Vivo: Torsades de Pointes Develops with Halothane but not Pentobarbital Anesthesia. Journal of Cardiovascular Electrophysiology, 2000, 11, 290-304.	0.8	150
84	Tpeak-Tend interval as an index of transmural dispersion of repolarization. European Journal of Clinical Investigation, 2001, 31, 555-557.	1.7	150
85	Genetic, Molecular and Cellular Mechanisms Underlying the J Wave Syndromes. Circulation Journal, 2012, 76, 1054-1065.	0.7	149
86	Inherited cardiac arrhythmias. Nature Reviews Disease Primers, 2020, 6, 58.	18.1	146
87	Fever-induced Brugada pattern: How common is it and what does it mean?. Heart Rhythm, 2013, 10, 1375-1382.	0.3	145
88	Heterogeneity and cardiac arrhythmias: An overview. Heart Rhythm, 2007, 4, 964-972.	0.3	144
89	Maximum Diastolic Potential of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Depends Critically on IKr. PLoS ONE, 2012, 7, e40288.	1.1	144
90	Chronic Amiodarone Reduces Transmural Dispersion of Repolarization in the Canine Heart. Journal of Cardiovascular Electrophysiology, 1997, 8, 1269-1279.	0.8	142

#	Article	IF	CITATIONS
91	Electrocardiographic changes predicting sudden death in propofol-related infusion syndrome. Heart Rhythm, 2006, 3, 131-137.	0.3	142
92	Distribution of M Cells in the Canine Ventricle. Journal of Cardiovascular Electrophysiology, 1994, 5, 824-837.	0.8	133
93	Short QT Syndrome: From Bench to Bedside. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 401-408.	2.1	132
94	Transmural dispersion of repolarization and arrhythmogenicity: The brugada syndrome versus the long QT syndrome. Journal of Electrocardiology, 1999, 32, 158-165.	0.4	126
95	Amplification of spatial dispersion of repolarization underlies sudden cardiac death associated with catecholaminergic polymorphic VT, long QT, short QT and Brugada syndromes. Journal of Internal Medicine, 2006, 259, 48-58.	2.7	125
96	Jâ€Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Journal of Arrhythmia, 2016, 32, 315-339.	0.5	125
97	Synergistic Effect of the Combination of Ranolazine and Dronedarone to Suppress Atrial Fibrillation. Journal of the American College of Cardiology, 2010, 56, 1216-1224.	1.2	123
98	Sodium Pentobarbital Reduces Transmural Dispersion of Repolarization and Prevents Torsades de Pointes in Models of Acquired and Congenital Long QT Syndrome. Journal of Cardiovascular Electrophysiology, 1999, 10, 154-164.	0.8	122
99	Potential Proarrhythmic Effects of Biventricular Pacing. Journal of the American College of Cardiology, 2005, 46, 2340-2347.	1.2	122
100	Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace, 2007, 9, iv4-iv15.	0.7	122
101	Cellular Basis for Complex T Waves and Arrhythmic Activity Following Combined IKr and IKs Block. Journal of Cardiovascular Electrophysiology, 2001, 12, 1369-1378.	0.8	121
102	J-wave syndromes: Brugada and early repolarization syndromes. Heart Rhythm, 2015, 12, 1852-1866.	0.3	120
103	The Role of Late I Na in Development of Cardiac Arrhythmias. Handbook of Experimental Pharmacology, 2014, 221, 137-168.	0.9	120
104	Acceleration-Induced Action Potential Prolongation and Early Afterdepolarizations. Journal of Cardiovascular Electrophysiology, 1998, 9, 934-948.	0.8	118
105	Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias. Heart Rhythm, 2006, 3, 948-956.	0.3	118
106	Late-Phase 3 EAD. A Unique Mechanism Contributing to Initiation of Atrial Fibrillation. PACE - Pacing and Clinical Electrophysiology, 2006, 29, 290-295.	0.5	117
107	Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation. Heart Rhythm, 2008, 5, 427-435.	0.3	117
108	Mechanisms underlying the development of the electrocardiographic and arrhythmic manifestations of early repolarization syndrome. Journal of Molecular and Cellular Cardiology, 2014, 68, 20-28.	0.9	116

#	Article	IF	CITATIONS
109	Cisapride-Induced Transmural Dispersion of Repolarization and Torsade de Pointes in the Canine Left Ventricular Wedge Preparation During Epicardial Stimulation. Circulation, 2003, 108, 1027-1033.	1.6	115
110	Electrophysiologic Properties and Antiarrhythmic Actions of a Novel Antianginal Agent. Journal of Cardiovascular Pharmacology and Therapeutics, 2004, 9, S65-S83.	1.0	115
111	Abnormal Repolarization as the Basis for Late Potentials and Fractionated Electrograms Recorded From Epicardium in Experimental Models of Brugada Syndrome. Journal of the American College of Cardiology, 2014, 63, 2037-2045.	1.2	115
112	Ischemic ventricular arrhythmias: Experimental models and their clinical relevance. Heart Rhythm, 2011, 8, 1963-1968.	0.3	114
113	<i>I</i> _{NaCa} contributes to electrical heterogeneity within the canine ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1671-H1678.	1.5	113
114	Antiarrhythmic effects of ranolazine in canine pulmonary vein sleeve preparations. Heart Rhythm, 2008, 5, 1019-1026.	0.3	113
115	ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene. International Journal of Cardiology, 2014, 171, 431-442.	0.8	113
116	The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovascular Research, 2013, 99, 600-611.	1.8	111
117	Drug-Induced Afterdepolarizations and Triggered Activity Occur in a Discrete Subpopulation of Ventricular Muscle Cells (M Cells) in the Canine Heart: Journal of Cardiovascular Electrophysiology, 1993, 4, 48-58.	0.8	107
118	Empiric quinidine therapy for asymptomatic Brugada syndrome: Time for a prospective registry. Heart Rhythm, 2009, 6, 401-404.	0.3	106
119	Evidence for the Presence of M Cells in the Guinea Pig Ventricle. Journal of Cardiovascular Electrophysiology, 1996, 7, 503-511.	0.8	105
120	Cellular basis for long QT, transmural dispersion of repolarization, and torsade de pointes in the long QT syndrome. Journal of Electrocardiology, 1999, 32, 177-184.	0.4	105
121	The Brugada syndrome: diagnostic criteria and cellular mechanisms. European Heart Journal, 2001, 22, 356-363.	1.0	105
122	Brugada syndrome: From cell to bedside. Current Problems in Cardiology, 2005, 30, 9-54.	1.1	105
123	Accelerated inactivation of the L-type calcium current due to a mutation in CACNB2b underlies Brugada syndrome. Journal of Molecular and Cellular Cardiology, 2009, 46, 695-703.	0.9	104
124	A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Na 1.5 and K 4.3 channel currents. Heart Rhythm, 2012, 9, 760-769.	0.3	104
125	Compound Heterozygous Mutations P336L and I1660V in the Human Cardiac Sodium Channel Associated With the Brugada Syndrome. Circulation, 2006, 114, 2026-2033.	1.6	102
126	Atrial Fibrillation and Brugada Syndrome. Journal of the American College of Cardiology, 2008, 51, 1149-1153.	1.2	102

#	Article	IF	CITATIONS
127	The Brugada Syndrome: Is an Implantable Cardioverter Defibrillator the Only Therapeutic Option?. PACE - Pacing and Clinical Electrophysiology, 2002, 25, 1634-1640.	0.5	101
128	Cellular Mechanisms Underlying the Development of Catecholaminergic Ventricular Tachycardia. Circulation, 2005, 111, 2727-2733.	1.6	101
129	Sudden cardiac death secondary to antidepressant and antipsychotic drugs. Expert Opinion on Drug Safety, 2008, 7, 181-194.	1.0	101
130	A transient outward potassium current activator recapitulates the electrocardiographic manifestations of Brugada syndrome. Cardiovascular Research, 2008, 81, 686-694.	1.8	99
131	Risk stratification in Brugada syndrome: Clinical characteristics, electrocardiographic parameters, and auxiliary testing. Heart Rhythm, 2016, 13, 299-310.	0.3	98
132	Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm, 2008, 5, 585-590.	0.3	96
133	Brugada Syndrome: Clinical, Genetic, Molecular, Cellular, and Ionic Aspects. Current Problems in Cardiology, 2016, 41, 7-57.	1.1	96
134	Electrophysiologic Characteristics of M Cells in the Canine Left Ventricular Free Wall. Journal of Cardiovascular Electrophysiology, 1995, 6, 591-603.	0.8	95
135	Transmural dispersion of repolarization and the T wave. Cardiovascular Research, 2001, 50, 426-431.	1.8	93
136	Dimethyl Lithospermate B, an Extract of Danshen, Suppresses Arrhythmogenesis Associated With the Brugada Syndrome. Circulation, 2006, 113, 1393-1400.	1.6	93
137	Arrhythmogenic mechanisms of QT prolonging drugs: Is QT prolongation really the problem?. Journal of Electrocardiology, 2004, 37, 15-24.	0.4	89
138	Induced Pluripotent Stem Cells as a Model for Accelerated Patient- and Disease-specific Drug Discovery. Current Medicinal Chemistry, 2010, 17, 759-766.	1.2	88
139	High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia. Heart Rhythm, 2015, 12, 1584-1594.	0.3	86
140	Cellular basis for electrocardiographic and arrhythmic manifestations of Andersen-Tawil syndrome (LQT7). Heart Rhythm, 2006, 3, 328-335.	0.3	84
141	Long QT, syndactyly, joint contractures, stroke and novel <i>CACNA1C</i> mutation: Expanding the spectrum of Timothy syndrome. American Journal of Medical Genetics, Part A, 2012, 158A, 182-187.	0.7	84
142	The Case for Modulated Parasystole. PACE - Pacing and Clinical Electrophysiology, 1982, 5, 911-926.	0.5	83
143	Cellular basis and mechanism underlying normal and abnormal myocardial repolarization and arrhythmogenesis. Annals of Medicine, 2004, 36, 5-14.	1.5	83
144	Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation, 2020, 142, 324-338.	1.6	83

#	Article	IF	CITATIONS
145	Role of late sodium current in modulating the proarrhythmic and antiarrhythmic effects of quinidine. Heart Rhythm, 2008, 5, 1726-1734.	0.3	80
146	Cellular basis for the electrocardiographic and arrhythmic manifestations of Timothy syndrome: Effects of ranolazine. Heart Rhythm, 2007, 4, 638-647.	0.3	79
147	J wave syndromes: Molecular and cellular mechanisms. Journal of Electrocardiology, 2013, 46, 510-518.	0.4	79
148	Antiarrhythmic effects of the highly selective late sodium channel current blocker GS-458967. Heart Rhythm, 2013, 10, 1036-1043.	0.3	79
149	Novel Timothy syndrome mutation leading to increase in CACNA1C window current. Heart Rhythm, 2015, 12, 211-219.	0.3	79
150	Is there a significant transmural gradient in repolarization time in the intact heart?. Circulation: Arrhythmia and Electrophysiology, 2009, 2, 80-88.	2.1	78
151	Drug-induced spatial dispersion of repolarization. Cardiology Journal, 2008, 15, 100-21.	0.5	78
152	The Role of Sodium Channel Current in Modulating Transmural Dispersion of Repolarization and Arrhythmogenesis. Journal of Cardiovascular Electrophysiology, 2006, 17, S79-S85.	0.8	77
153	The phenomenon of "QT stunning― The abnormal QT prolongation provoked by standing persists even as the heart rate returns to normal in patients with long QT syndrome. Heart Rhythm, 2012, 9, 901-908.	0.3	77
154	Afterdepolarizations and Triggered Activity Develop in a Select Population of Cells (M Cells) in Canine Ventricular Myocardium: The Effects of Acetylstrophanthidin and Bay K 8644. PACE - Pacing and Clinical Electrophysiology, 1991, 14, 1714-1720.	0.5	76
155	HMR 1556, A Potent and Selective Blocker of Slowly Activating Delayed Rectifier Potassium Current. Journal of Cardiovascular Pharmacology, 2003, 41, 140-147.	0.8	76
156	Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Progress in Biophysics and Molecular Biology, 2011, 107, 4-10.	1.4	75
157	Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Voltage–Dependent L-Type Calcium Channel. Circulation Research, 2011, 108, 607-618.	2.0	75
158	Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation. Heart Rhythm, 2012, 9, 125-131.	0.3	75
159	Ion channels and ventricular arrhythmias: cellular and ionic mechanisms underlying the Brugada syndrome. Current Opinion in Cardiology, 1999, 14, 274.	0.8	75
160	Short QT syndrome. Journal of Electrocardiology, 2005, 38, 75-80.	0.4	74
161	Synergistic Electrophysiologic and Antiarrhythmic Effects of the Combination of Ranolazine and Chronic Amiodarone in Canine Atria. Circulation: Arrhythmia and Electrophysiology, 2010, 3, 88-95.	2.1	74
162	Basic mechanisms of reentrant arrhythmias. Current Opinion in Cardiology, 2001, 16, 1-7.	0.8	73

#	Article	IF	CITATIONS
163	Effects of Sodium Channel Block with Mexiletine to Reverse Action Potential Prolongation in In Vitro Models of the Long QT Syndrome. Journal of Cardiovascular Electrophysiology, 1997, 8, 1280-1290.	0.8	71
164	Specific Therapy Based on the Genotype and Cellular Mechanism in Inherited Cardiac Arrhythmias. Long QT Syndrome and Brugada Syndrome. Current Pharmaceutical Design, 2005, 11, 1561-1572.	0.9	71
165	Cellular Mechanism Underlying Hypothermia-Induced Ventricular Tachycardia/Ventricular Fibrillation in the Setting of Early Repolarization and the Protective Effect of Quinidine, Cilostazol, and Milrinone. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 134-142.	2.1	70
166	Prognostic significance of fever-induced Brugada syndrome. Heart Rhythm, 2016, 13, 1515-1520.	0.3	68
167	In vivo human demonstration of phase 2 reentry. Heart Rhythm, 2005, 2, 804-806.	0.3	67
168	Divergent expression of delayed rectifier K+ channel subunits during mouse heart development. Cardiovascular Research, 2001, 52, 65-75.	1.8	66
169	The Brugada syndrome: clinical, genetic, cellular, and molecular abnormalities. American Journal of Medicine, 2001, 110, 573-581.	0.6	65
170	Augmentation of late sodium current unmasks the proarrhythmic effects of amiodarone. Cardiovascular Research, 2007, 77, 481-488.	1.8	65
171	Quinidine: a valuable medication joins the list of 'endangered species'. Europace, 2007, 9, 1105-1106.	0.7	65
172	Cellular Basis for the Repolarization Waves of the ECG. Annals of the New York Academy of Sciences, 2006, 1080, 268-281.	1.8	64
173	Occurrence of "J Waves" in 12-Lead ECG as a Marker of Acute Ischemia and Their Cellular Basis. PACE - Pacing and Clinical Electrophysiology, 2007, 30, 817-819.	0.5	64
174	Transmembrane action potential heterogeneity in the canine isolated arterially perfused right atrium: effect of IKr and IKur/Ito block. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2393-H2400.	1.5	63
175	Atrial-selective effects of chronic amiodarone in the management of atrial fibrillation. Heart Rhythm, 2008, 5, 1735-1742.	0.3	63
176	Block of IKsDoes Not Induce Early Afterdepolarization Activity but Promotes ?-Adrenergic Agonist-Induced Delayed Afterdepolarization Activity. Journal of Cardiovascular Electrophysiology, 2000, 11, 458-465.	0.8	62
177	Cellular basis for ST-segment changes observed during ischemia. Journal of Electrocardiology, 2003, 36, 1-5.	0.4	62
178	Cardiac repolarization. The long and short of it*. Europace, 2005, 7, S3-S9.	0.7	62
179	A Novel Mutation in the <i>HCN4</i> Gene Causes Symptomatic Sinus Bradycardia in Moroccan Jews. Journal of Cardiovascular Electrophysiology, 2010, 21, 1365-1372.	0.8	62
180	Rationale for the Use of the Terms J-Wave Syndromes and Early Repolarization. Journal of the American College of Cardiology, 2011, 57, 1587-1590.	1.2	62

#	Article	IF	CITATIONS
181	Identification and characterization of a transient outward K+ current in human induced pluripotent stem cell-derived cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2013, 60, 36-46.	0.9	62
182	Shanghai Score System for Diagnosis of Brugada Syndrome. JACC: Clinical Electrophysiology, 2018, 4, 724-730.	1.3	62
183	Novel mutations in domain I of SCN5A cause Brugada syndrome. Molecular Genetics and Metabolism, 2002, 75, 317-324.	0.5	61
184	Electromechanical coupling in patients with the short QT syndrome: Further insights into the mechanoelectrical hypothesis of the U wave. Heart Rhythm, 2008, 5, 241-245.	0.3	61
185	New developments in atrial antiarrhythmic drug therapy. Nature Reviews Cardiology, 2010, 7, 139-148.	6.1	61
186	Brugada-Like Syndrome in Infancy Presenting With Rapid Ventricular Tachycardia and Intraventricular Conduction Delay. Circulation, 2012, 125, 14-22.	1.6	61
187	Novel mutations in the KCND3-encoded Kv4.3 K+ channel associated with autopsy-negative sudden unexplained death. Human Mutation, 2012, 33, 989-997.	1.1	61
188	M Cells in the Human Heart. Circulation Research, 2010, 106, 815-817.	2.0	59
189	Novel mutation in the SCN5A gene associated with arrhythmic storm development during acute myocardial infarction. Heart Rhythm, 2007, 4, 1072-1080.	0.3	58
190	The Phenotypic Spectrum of a MutationÂHotspot Responsible for theÂShort QT Syndrome. JACC: Clinical Electrophysiology, 2017, 3, 727-743.	1.3	58
191	Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls. Genetics in Medicine, 2021, 23, 47-58.	1.1	57
192	Cellular and ionic mechanisms responsible for the brugada syndrome. Journal of Electrocardiology, 2000, 33, 33-39.	0.4	56
193	Mechanisms of atrial-selective block of Na ⁺ channels by ranolazine: I. Experimental analysis of the use-dependent block. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1606-H1614.	1.5	56
194	Ranolazine for Congenital Long-QT Syndrome Type III. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	2.1	56
195	Cellular and ionic basis for the sex-related difference in the manifestation of the Brugada syndrome and progressive conduction disease phenotypes. Journal of Electrocardiology, 2003, 36, 173-179.	0.4	55
196	Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nature Genetics, 2022, 54, 232-239.	9.4	55
197	ECG phenomenon of idiopathic and paradoxical short QT intervals. Journal of Interventional Cardiac Electrophysiology, 2002, 6, 49-53.	0.9	54
198	Atrial-selective sodium channel block as a novel strategy for the management of atrial fibrillation. Journal of Electrocardiology, 2009, 42, 543-548.	0.4	54

#	Article	IF	CITATIONS
199	Genetic and biophysical basis for bupivacaine-induced ST segment elevation and VT/VF. Anesthesia unmasked Brugada syndrome. Heart Rhythm, 2006, 3, 1074-1078.	0.3	53
200	<i>Atrial‣elective Sodium Channel Block as a Strategy for Suppression of Atrial Fibrillation</i> . Annals of the New York Academy of Sciences, 2008, 1123, 105-112.	1.8	53
201	A Common Single Nucleotide Polymorphism Can Exacerbate Long-QT Type 2 Syndrome Leading to Sudden Infant Death. Circulation: Cardiovascular Genetics, 2010, 3, 199-206.	5.1	53
202	Cellular mechanisms underlying the effects of milrinone and cilostazol to suppress arrhythmogenesis associated with Brugada syndrome. Heart Rhythm, 2013, 10, 1720-1727.	0.3	53
203	Molecular biology and cellular mechanisms of brugada and long QT syndromes in infants and young children. Journal of Electrocardiology, 2001, 34, 177-181.	0.4	52
204	Prominent IKs in Epicardium and Endocardium Contributes to Development of Transmural Dispersion of Repolarization but Protects Against Development of Early Afterdepolarizations. Journal of Cardiovascular Electrophysiology, 2002, 13, 172-177.	0.8	52
205	Brugada syndrome and ischemia-induced ST-segment elevation. Similarities and differences. Journal of Electrocardiology, 2005, 38, 14-17.	0.4	52
206	Drug-induced QT-interval shortening following antiepileptic treatment with oral rufinamide. Heart Rhythm, 2012, 9, 776-781.	0.3	52
207	Coordinated down-regulation of KCNQ1 and KCNE1 expression contributes to reduction of IKs in canine hypertrophied hearts. Cardiovascular Research, 2003, 57, 486-496.	1.8	51
208	Molecular Genetics of Arrhythmias and Cardiovascular Conditions Associated with Arrhythmias. Journal of Cardiovascular Electrophysiology, 2003, 14, 1259-1272.	0.8	50
209	Phenotypic Characterization of a Large European Family with Brugada Syndrome Displaying a Sudden Unexpected Death Syndrome Mutation inSCN5A:. Journal of Cardiovascular Electrophysiology, 2004, 15, 64-69.	0.8	50
210	Calcium Channel Mutations in Cardiac Arrhythmia Syndromes. Current Molecular Pharmacology, 2015, 8, 133-142.	0.7	50
211	Chromanol 293B Inhibits Slowly Activating Delayed Rectifier and Transient Outward Currents in Canine Left Ventricular Myocytes. Journal of Cardiovascular Electrophysiology, 2001, 12, 472-478.	0.8	49
212	Modulation of Transmural Repolarization. Annals of the New York Academy of Sciences, 2005, 1047, 314-323.	1.8	49
213	Atrial-Selective Sodium Channel Block Strategy to Suppress Atrial Fibrillation: Ranolazine versus Propafenone. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 161-168.	1.3	49
214	Brugada syndrome: Recent advances and controversies. Current Cardiology Reports, 2008, 10, 376-383.	1.3	48
215	Can inhibition of IKur promote atrial fibrillation?. Heart Rhythm, 2008, 5, 1304-1309.	0.3	48
216	Effect of Wenxin Keli and quinidine to suppress arrhythmogenesis in an experimental model of Brugada syndrome. Heart Rhythm, 2013, 10, 1054-1062.	0.3	48

#	Article	IF	CITATIONS
217	Acute myocardial ischemia: Cellular mechanisms underlying ST segment elevation. Journal of Electrocardiology, 2014, 47, 486-490.	0.4	48
218	Role of M cells in acquired long QT syndrome, U waves, and torsade de pointes. Journal of Electrocardiology, 1995, 28, 131-138.	0.4	47
219	Provocation of sudden heart rate oscillation with adenosine exposes abnormal QT responses in patients with long QT syndrome: a bedside test for diagnosing long QT syndrome. European Heart Journal, 2006, 27, 469-475.	1.0	46
220	Atrial-Selective Sodium Channel Blockers: Do They Exist?. Journal of Cardiovascular Pharmacology, 2008, 52, 121-128.	0.8	46
221	Differential effects of the transient outward K+ current activator NS5806 in the canine left ventricle. Journal of Molecular and Cellular Cardiology, 2010, 48, 191-200.	0.9	46
222	Rate-Dependent Effects of Vernakalant in the Isolated Non-Remodeled Canine Left Atria Are Primarily Due to Block of the Sodium Channel. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 400-408.	2.1	46
223	Role of Late Sodium Channel Current Block in the Management of Atrial Fibrillation. Cardiovascular Drugs and Therapy, 2013, 27, 79-89.	1.3	46
224	Further Insights in the Most Common <i>SCN5A</i> Mutation Causing Overlapping Phenotype of Long QT Syndrome, Brugada Syndrome, and Conduction Defect. Journal of the American Heart Association, 2016, 5, .	1.6	46
225	Electrical Heterogeneity, Cardiac Arrhythmias, and the Sodium Channel. Circulation Research, 2000, 87, 964-965.	2.0	45
226	Cellular Mechanism and Arrhythmogenic Potential of Tâ€Wave Alternans in the Brugada Syndrome. Journal of Cardiovascular Electrophysiology, 2008, 19, 301-308.	0.8	45
227	Lidocaine-Induced Brugada Syndrome Phenotype Linked to a Novel Double Mutation in the Cardiac Sodium Channel. Circulation Research, 2008, 103, 396-404.	2.0	45
228	Extracellular proton depression of peak and late Na ⁺ current in the canine left ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H936-H944.	1.5	45
229	Cellular and subcellular alternans in the canine left ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3506-H3516.	1.5	44
230	J-wave syndromes. From cell to bedside. Journal of Electrocardiology, 2011, 44, 656-661.	0.4	44
231	Ionic and Cellular Mechanisms Underlying the Development of Acquired Brugada Syndrome in Patients Treated with Antidepressants. Journal of Cardiovascular Electrophysiology, 2012, 23, 423-432.	0.8	44
232	Optical and electrical recordings from isolated coronary-perfused ventricular wedge preparations. Journal of Molecular and Cellular Cardiology, 2013, 54, 53-64.	0.9	44
233	Cellular basis for the monophasic action potential. Which electrode is the recording electrode?. Cardiovascular Research, 2004, 63, 635-644.	1.8	43
234	Functional expression of "cardiac-type―Nav1.5 sodium channel in canine intracardiac ganglia. Heart Rhythm, 2006, 3, 842-850.	0.3	43

#	Article	IF	CITATIONS
235	A CACNA1C Variant Associated with Reduced Voltage-Dependent Inactivation, Increased CaV1.2 Channel Window Current, and Arrhythmogenesis. PLoS ONE, 2014, 9, e106982.	1.1	43
236	Pharmacological approach to the treatment of long and short QT syndromes. , 2008, 118, 138-151.		41
237	The M Cell. Journal of Cardiovascular Pharmacology and Therapeutics, 1997, 2, 73-76.	1.0	40
238	Genetic basis of Brugada syndrome. Heart Rhythm, 2007, 4, 756-757.	0.3	40
239	Fever Accentuates Transmural Dispersion of Repolarization and Facilitates Development of Early Afterdepolarizations and Torsade de Pointes Under Long-QT Conditions. Circulation: Arrhythmia and Electrophysiology, 2008, 1, 202-208.	2.1	40
240	Mechanisms Underlying Epicardial Radiofrequency Ablation to Suppress Arrhythmogenesis in Experimental ModelsÂof Brugada Syndrome. JACC: Clinical Electrophysiology, 2017, 3, 353-363.	1.3	40
241	Usefulness of exercise test in the diagnosis of short QT syndrome. Europace, 2015, 17, 628-634.	0.7	39
242	Dual Variation inâ€, <i>SCN5A</i> â€,andâ€, <i>CACNB2b</i> â€,Underlies the Development of Cardiac Conduction Disease without Brugada Syndrome. PACE - Pacing and Clinical Electrophysiology, 2010, 33, 274-285.	0.5	37
243	Cellular basis for atrial fibrillation in an experimental model of short QT1: Implications for a pharmacological approach to therapy. Heart Rhythm, 2010, 7, 251-257.	0.3	37
244	Atrial fibrillation in inherited cardiac channelopathies: From mechanisms to management. Heart Rhythm, 2016, 13, 1878-1884.	0.3	37
245	Atrial-selective sodium channel block for the treatment of atrial fibrillation. Expert Opinion on Emerging Drugs, 2009, 14, 233-249.	1.0	35
246	Transseptal Dispersion of Repolarization and Its Role in the Development of Torsade de Pointes Arrhythmias. Journal of Cardiovascular Electrophysiology, 2010, 21, 441-447.	0.8	35
247	Physiological consequences of transient outward K+ current activation during heart failure in the canine left ventricle. Journal of Molecular and Cellular Cardiology, 2012, 52, 1291-1298.	0.9	34
248	Torsades de pointes following acute myocardial infarction: Evidence for a deadly link with a common genetic variant. Heart Rhythm, 2012, 9, 1104-1112.	0.3	34
249	Ranolazine Effectively Suppresses Atrial Fibrillation in the Setting of Heart Failure. Circulation: Heart Failure, 2014, 7, 627-633.	1.6	34
250	Mechanisms of atrial-selective block of Na ⁺ channels by ranolazine: II. Insights from a mathematical model. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1615-H1624.	1.5	33
251	Mechanisms Underlying the Actions of Antidepressant and Antipsychotic Drugs That Cause Sudden Cardiac Arrest. Arrhythmia and Electrophysiology Review, 2018, 7, 199.	1.3	33
252	Molecular mechanisms underlying the long QT syndrome. Current Opinion in Cardiology, 2002, 17, 36-42.	0.8	32

#	Article	IF	CITATIONS
253	The Enigmatic ECG Manifestation of Brugada Syndrome. Journal of Cardiovascular Electrophysiology, 1998, 9, 109-111.	0.8	31
254	Link Between Hypothermia and the Brugada Syndrome. Journal of Cardiovascular Electrophysiology, 2004, 15, 942-944.	0.8	31
255	Biophysical and Molecular Characterization of a Novel De Novo <i>KCNJ2</i> Mutation Associated With Andersen-Tawil Syndrome and Catecholaminergic Polymorphic Ventricular Tachycardia Mimicry. Circulation: Cardiovascular Genetics, 2011, 4, 51-57.	5.1	31
256	Is there an overlap between Brugada syndrome and arrhythmogenic right ventricular cardiomyopathy/dysplasia?. Journal of Electrocardiology, 2005, 38, 260-263.	0.4	30
257	Comparison of the Effects of a Transient Outward Potassium Channel Activator on Currents Recorded from Atrial and Ventricular Cardiomyocytes. Journal of Cardiovascular Electrophysiology, 2011, 22, 1057-1066.	0.8	30
258	Reflected reentry, delayed conduction, and electrotonic inhibition in segmentally depressed atrial tissues. Canadian Journal of Physiology and Pharmacology, 1989, 67, 757-764.	0.7	29
259	Sympathetic modulation of the long QT syndrome. European Heart Journal, 2002, 23, 1246-1252.	1.0	29
260	The Contribution of <i>HCN4</i> to Normal Sinus Node Function in Humans and Animal Models. PACE - Pacing and Clinical Electrophysiology, 2010, 33, 100-106.	0.5	29
261	Acute dronedarone is inferior to amiodarone in terminating and preventing atrial fibrillation in canine atria. Heart Rhythm, 2010, 7, 1273-1279.	0.3	29
262	Antiarrhythmic Effects of Simvastatin in Canine Pulmonary Vein Sleeve Preparations. Journal of the American College of Cardiology, 2011, 57, 986-993.	1.2	29
263	Novel pharmacological targets for the rhythm control management of atrial fibrillation. , 2011, 132, 300-313.		29
264	Management of Ventricular Arrhythmias in Suspected Channelopathies. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 221-231.	2.1	29
265	Differences in the electrophysiologic response of four canine ventricular cell types to α1-adrenergic agonists. Cardiovascular Research, 1999, 43, 901-908.	1.8	28
266	PQ segment depression in patients with short QT syndrome: A novel marker for diagnosing short QT syndrome?. Heart Rhythm, 2014, 11, 1024-1030.	0.3	28
267	Cardiac Arrhythmias Related to Sodium Channel Dysfunction. Handbook of Experimental Pharmacology, 2017, 246, 331-354.	0.9	28
268	Androgens and Male Predominance of the Brugada Syndrome Phenotype. PACE - Pacing and Clinical Electrophysiology, 2003, 26, 1429-1431.	0.5	27
269	Modulation of canine cardiac sodium current by Apelin. Journal of Molecular and Cellular Cardiology, 2010, 48, 694-701.	0.9	27
270	Electrophysiological Characteristics of Canine Superior Vena Cava Sleeve Preparations. Circulation: Arrhythmia and Electrophysiology, 2012, 5, 371-379.	2.1	27

#	Article	IF	CITATIONS
271	A Novel Mutation in <i>KCNQ1</i> Associated with a Potent Dominant Negative Effect as the Basis for the LQT1 Form of the Long QT Syndrome. Journal of Cardiovascular Electrophysiology, 2007, 18, 972-977.	0.8	26
272	Atrialâ€selective sodium channel block as a novel strategy for the management of atrial fibrillation. Annals of the New York Academy of Sciences, 2010, 1188, 78-86.	1.8	26
273	KCNE2 modulation of Kv4.3 current and its potential role in fatal rhythm disorders. Heart Rhythm, 2010, 7, 199-205.	0.3	26
274	Cellular and ionic mechanisms underlying the effects of cilostazol, milrinone, and isoproterenol to suppress arrhythmogenesis in an experimental model of early repolarization syndrome. Heart Rhythm, 2016, 13, 1326-1334.	0.3	26
275	AZD1305 Exerts Atrial Predominant Electrophysiological Actions and Is Effective in Suppressing Atrial Fibrillation and Preventing Its Reinduction in the Dog. Journal of Cardiovascular Pharmacology, 2010, 56, 80-90.	0.8	25
276	Is a narrow and tall QRS complex an ECG marker for sudden death?. Heart Rhythm, 2008, 5, 1339-1345.	0.3	24
277	Tissue-specific effects of acetylcholine in the canine heart. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H66-H75.	1.5	24
278	Identification of a Novel De Novo Mutation Associated with PRKAG2 Cardiac Syndrome and Early Onset of Heart Failure. PLoS ONE, 2013, 8, e64603.	1.1	23
279	Molecular and Functional Characterization of RareCACNA1CVariants in Sudden Unexplained Death in the Young. Congenital Heart Disease, 2016, 11, 683-692.	0.0	23
280	Mechanisms underlying atrial-selective block of sodium channels by Wenxin Keli: Experimental and theoretical analysis. International Journal of Cardiology, 2016, 207, 326-334.	0.8	23
281	The Brugada syndrome. Current Opinion in Cardiology, 2002, 17, 19-23.	0.8	22
282	Brugada syndrome. International Journal of Cardiology, 2005, 101, 173-178.	0.8	22
283	Potent Antiarrhythmic Effects of Chronic Amiodarone in Canine Pulmonary Vein Sleeve Preparations. Journal of Cardiovascular Electrophysiology, 2009, 20, 803-810.	0.8	22
284	New Pharmacological Strategies for the Treatment of Atrial Fibrillation. Annals of Noninvasive Electrocardiology, 2009, 14, 290-300.	0.5	22
285	Postpacing abnormal repolarization in catecholaminergic polymorphic ventricular tachycardia associated with a mutation in the cardiac ryanodine receptor gene. Heart Rhythm, 2011, 8, 1546-1552.	0.3	22
286	Resolving the M-cell debate: Why and how. Heart Rhythm, 2011, 8, 1293-1295.	0.3	22
287	Tpeak-Tend interval as a marker of arrhythmic risk. Heart Rhythm, 2019, 16, 954-955.	0.3	22
288	Distinct Features of Probands With Early Repolarization and Brugada Syndromes Carrying SCN5A Pathogenic Variants. Journal of the American College of Cardiology, 2021, 78, 1603-1617.	1.2	22

#	Article	IF	CITATIONS
289	Genetic predisposition and cellular basis for ischemia-induced ST-segment changes and arrhythmias. Journal of Electrocardiology, 2007, 40, S26-S29.	0.4	21
290	LQT5 masquerading as LQT2: a dominant negative effect of KCNE1-D85N rare polymorphism on KCNH2 current. Europace, 2011, 13, 1478-1483.	0.7	21
291	Atrial-selective Prolongation of Refractory Period With AVE0118 is Due Principally to Inhibition of Sodium Channel Activity. Journal of Cardiovascular Pharmacology, 2012, 59, 539-546.	0.8	21
292	Comparison of electrophysiological and antiarrhythmic effects of vernakalant, ranolazine, and sotalol in canine pulmonary vein sleeve preparations. Heart Rhythm, 2012, 9, 422-429.	0.3	21
293	The Effects of Milrinone on Action Potential Characteristics, Conduction, Automaticity, and Reflected Reentry in Isolated Myocardial Fibers. Journal of Cardiovascular Pharmacology, 1985, 7, 341-349.	0.8	20
294	Electrophysiologic Characteristics and Pharmacologic Response of Human Cardiomyocytes Isolated from a Patient with Hypertrophic Cardiomyopathy. PACE - Pacing and Clinical Electrophysiology, 2013, 36, 1512-1515.	0.5	20
295	Acacetin suppresses the electrocardiographic and arrhythmic manifestations of the J wave syndromes. PLoS ONE, 2020, 15, e0242747.	1.1	20
296	The role of local voltage potentials in outflow tract ectopy. Europace, 2010, 12, 850-860.	0.7	19
297	Novel therapeutic strategies for the management of ventricular arrhythmias associated with the Brugada syndrome. Expert Opinion on Orphan Drugs, 2015, 3, 633-651.	0.5	19
298	Identification, clinical manifestation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease. EBioMedicine, 2020, 54, 102723.	2.7	19
299	Disopyramide: Although potentially life-threatening in the setting of long QT, could it be life-saving in short QT syndrome?. Journal of Molecular and Cellular Cardiology, 2006, 41, 421-423.	0.9	18
300	Identification of Specific Pluripotent Stem Cell Death—Inducing Small Molecules by Chemical Screening. Stem Cell Reviews and Reports, 2012, 8, 116-127.	5.6	18
301	Ventricular fibrillation associated with complete right bundle branch block. Heart Rhythm, 2013, 10, 1028-1035.	0.3	18
302	J wave syndromes as a cause of malignant cardiac arrhythmias. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 684-699.	0.5	18
303	Quinidineâ€Induced Early Afterdepolarizations and Triggered Activity. Journal of Electrophysiology, 1989, 3, 323-338.	0.5	17
304	The antifungal antibiotic clotrimazole potently inhibits L-type calcium current in guinea-pig ventricular myocytes. British Journal of Pharmacology, 1999, 126, 1531-1533.	2.7	17
305	Molecular basis for the transmural distribution of the transient outward current. Journal of Physiology, 2001, 533, 1-1.	1.3	17
306	New approaches to antiarrhythmic therapy: emerging therapeutic applications of the cell biology of cardiac arrhythmias. Cardiovascular Research, 2001, 52, 345-360.	1.8	17

#	Article	IF	CITATIONS
307	Early repolarization syndrome: A decade of progress. Journal of Electrocardiology, 2013, 46, 110-113.	0.4	17
308	Atria are More Sensitive Than Ventricles to GS-458967-Induced Inhibition of Late Sodium Current. Journal of Cardiovascular Pharmacology and Therapeutics, 2015, 20, 501-508.	1.0	17
309	Andersen-Tawil syndrome: Clinical presentation and predictors of symptomatic arrhythmias – Possible role of polymorphisms K897T in KCNH2 and H558R in SCN5A gene. Journal of Cardiology, 2017, 70, 504-510.	0.8	17
310	Clinical Application of New Concepts of Parasystole, Reflection, and Tachycardia. Cardiology Clinics, 1983, 1, 39-50.	0.9	15
311	Correspondence. Cardiovascular Research, 1997, 36, 127-128.	1.8	15
312	Molecular Genetics of Arrhythmias and Cardiovascular Conditions Associated with Arrhythmias. PACE - Pacing and Clinical Electrophysiology, 2003, 26, 2194-2208.	0.5	15
313	When U Say "U Waves," What Do U Mean?. PACE - Pacing and Clinical Electrophysiology, 2004, 27, 145-147.	0.5	15
314	A temporal window of vulnerability for development of atrial fibrillation with advancing heart failure. European Journal of Heart Failure, 2014, 16, 271-280.	2.9	15
315	Inhibition of IKr potentiates development of atrial-selective INa block leading to effective suppression of atrial fibrillation. Heart Rhythm, 2015, 12, 836-844.	0.3	15
316	Recent advances in the treatment of Brugada syndrome. Expert Review of Cardiovascular Therapy, 2018, 16, 387-404.	0.6	15
317	How Do Atrial-Selective Drugs Differ From Antiarrhythmic Drugs Currently Used in the Treatment of Atrial Fibrillation, 2008, 1, 98-107.	0.5	15
318	Biophysical basis for monophasic action potential. Cardiovascular Research, 2005, 65, 942-944.	1.8	14
319	Developmental changes in expression and biophysics of ion channels in the canine ventricle. Journal of Molecular and Cellular Cardiology, 2013, 64, 79-89.	0.9	14
320	Tpeak-Tend as a predictor of ventricular arrhythmogenesis. International Journal of Cardiology, 2017, 249, 75-76.	0.8	14
321	Pooled Analysis of Risk Stratification of Spontaneous Type 1 Brugada ECG: Focus on the Influence of Gender and EPS. Frontiers in Physiology, 2018, 9, 1951.	1.3	14
322	Inter-Regulation of Kv4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies. International Journal of Molecular Sciences, 2020, 21, 5057.	1.8	14
323	GSTM3 variant is a novel genetic modifier in Brugada syndrome, a disease with risk of sudden cardiac death. EBioMedicine, 2020, 57, 102843.	2.7	14
324	Unraveling the Enigma of Bangungut: Is Sudden Unexplained Nocturnal Death Syndrome (SUNDS) in the Philippines a Disease Allelic to the Brugada Syndrome?. Philippine Journal of Internal Medicine, 2011, 49, 165-176.	0.0	14

#	Article	IF	CITATIONS
325	Acquired Forms of Brugada Syndrome. , 0, , 166-177.		13
326	Antiarrhythmic Effects of Losartan and Enalapril in Canine Pulmonary Vein Sleeve Preparations. Journal of Cardiovascular Electrophysiology, 2011, 22, 698-705.	0.8	13
327	Coexistence of atrioventricular accessory pathways and drugâ€induced type 1 Brugada pattern. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 1078-1092.	0.5	13
328	Multiple serial ECGs aid with the diagnosis and prognosis of Brugada syndrome. International Journal of Cardiology, 2019, 277, 130-135.	0.8	13
329	Abnormal myocardial expression of SAP97 is associated with arrhythmogenic risk. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1357-H1370.	1.5	13
330	Role of Repolarization Restitution in the Development of Coarse and Fine Atrial Fibrillation in the Isolated Canine Right Atria. Journal of Cardiovascular Electrophysiology, 2005, 16, 639-645.	0.8	12
331	Ranolazine: a new antiarrhythmic agent for patients with non-ST-segment elevation acute coronary syndromes?. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, 248-249.	3.3	12
332	Overlapping LQT1 and LQT2 phenotype in a patient with long QT syndrome associated with loss-of-function variations in KCNQ1 and KCNH2. Canadian Journal of Physiology and Pharmacology, 2010, 88, 1181-1190.	0.7	12
333	A complete right bundle-branch block masking Brugada syndrome. Journal of Electrocardiology, 2012, 45, 780-782.	0.4	12
334	Extending the Conditions of Application of an Inversion of the Hodgkin–Huxley Gating Model. Bulletin of Mathematical Biology, 2013, 75, 752-773.	0.9	12
335	Molecular genetics of arrhythmias and cardiovascular conditions associated with arrhythmias. Heart Rhythm, 2004, 1, C42-C56.	0.3	11
336	Epicardial Substrate as a Target for Radiofrequency Ablation in an Experimental Model of Early Repolarization Syndrome. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006511.	2.1	11
337	Susceptibility to Ventricular Arrhythmias Resulting from Mutations in <i>FKBP1B</i> , <i>PXDNL</i> , and <i>SCN9A</i> Evaluated in hiPSC Cardiomyocytes. Stem Cells International, 2020, 2020, 1-16.	1.2	11
338	Case Scenario. Anesthesiology, 2012, 117, 1117-1126.	1.3	11
339	Brugada syndrome: clinical, genetic, molecular, cellular and ionic aspects. Expert Review of Cardiovascular Therapy, 2003, 1, 177-185.	0.6	10
340	Electrophysiologic and Antiarrhythmic Effects of AZD1305 in Canine Pulmonary Vein Sleeves. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 255-259.	1.3	10
341	A gain-of-function IK-ATP mutation and its role in sudden cardiac death associated with J-wave syndromes. Heart Rhythm, 2010, 7, 1472-1474.	0.3	10
342	Traditional Chinese Medicine and Vascular Disease. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-2.	0.5	10

#	Article	IF	CITATIONS
343	Mutations in NaV1.5 Reveal Calcium-Calmodulin Regulation of Sodium Channel. Frontiers in Physiology, 2019, 10, 700.	1.3	10
344	The Small Conductance Calcium-Activated Potassium Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation Through Atrial-Selective Inhibition of Sodium Channel Activity. Journal of Cardiovascular Pharmacology, 2020, 76, 164-172.	0.8	10
345	Acacetin, a Potent Transient Outward Current Blocker, May Be a Novel Therapeutic for <i>KCND3</i> -Encoded Kv4.3 Gain-of-Function-Associated J-Wave Syndromes. Circulation Genomic and Precision Medicine, 2022, 15, .	1.6	10
346	Drugâ€induced Brugada syndrome. Journal of Arrhythmia, 2013, 29, 88-95.	0.5	9
347	Impact of Ancestral Differences and Reassessment of the Classification of Previously Reported Pathogenic Variants in Patients With Brugada Syndrome in the Genomic Era: A SADS-TW BrS Registry. Frontiers in Genetics, 2018, 9, 680.	1.1	9
348	To the Editor:. Journal of Cardiovascular Electrophysiology, 2003, 14, 114-114.	0.8	8
349	Cellular Mechanisms Underlying the Brugada Syndrome. , 0, , 52-77.		8
350	J wave syndromes: What's new?. Trends in Cardiovascular Medicine, 2022, 32, 350-363.	2.3	8
351	Electrophysiological Characteristics of the M Cell. , 1997, , 212-226.		8
352	Congenital short QT syndrome. Indian Pacing and Electrophysiology Journal, 2004, 4, 46-9.	0.3	8
353	ST Segment Elevation and Sudden Death in the Athlete. , 0, , 119-129.		7
354	The acquired Brugada syndrome and the paradox of choice. Heart Rhythm, 2009, 6, 1342-1344.	0.3	7
355	Cardiomyocyte calcium cycling in a naturally occurring German shepherd dog model of inherited ventricular arrhythmia and sudden cardiac death. Journal of Veterinary Cardiology, 2013, 15, 5-14.	0.3	7
356	Ajmaline-Induced Slowing of Conduction in the Right Ventricular Outflow Tract Cannot Account for ST Elevation in Patients With Type I Brugada ECG. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	7
357	Drug-induced Channelopathies. , 2004, , 151-157.		7
358	How to prevent sudden death in patients with inherited arrhythmia syndromes or cardiomyopathies. Journal of Electrocardiology, 2007, 40, S62-S65.	0.4	6
359	Multiple arrhythmic syndromes in a newborn, owing to a novel mutation in <i>SCN5A</i> . Canadian Journal of Physiology and Pharmacology, 2011, 89, 723-736.	0.7	6
360	Short QT Syndrome. Neurology International, 2011, 1, e5.	0.2	6

#	Article	IF	CITATIONS
361	Ranolazine versus amiodarone for prevention of postoperative atrial fibrillation. Future Cardiology, 2011, 7, 733-737.	O.5	6
362	Mechanisms Underlying Arrhythmogenesis in Long QT Syndrome. Cardiac Electrophysiology Clinics, 2012, 4, 17-27.	0.7	6
363	Malignant early repolarization: It's the T-wave, stupid…. Heart Rhythm, 2016, 13, 903-904.	0.3	6
364	Is extensive atrial fibrosis in the setting of heart failure associated with a reduced atrial fibrillation burden?. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 1289-1297.	0.5	6
365	Inferolateral J-wave syndromes: A reflection of abnormal repolarization, depolarization, or both?. Heart Rhythm, 2019, 16, 791-792.	0.3	6
366	Clinical and Functional Genetic Characterization of the Role of Cardiac Calcium Channel Variants in the Early Repolarization Syndrome. Frontiers in Cardiovascular Medicine, 2021, 8, 680819.	1.1	6
367	Common variants in <i>SCN10A</i> gene associated with Brugada syndrome. Human Molecular Genetics, 2021, 31, 157-165.	1.4	6
368	Diagnostic and genetic aspects of the Brugada and other inherited arrhythmias syndromes. Journal of Electrocardiology, 2007, 40, S11-S14.	0.4	5
369	Development of a coronary-perfused interventricular septal preparation as a model for studying the role of the septum in arrhythmogenesis. Journal of Electrocardiology, 2007, 40, S142-S144.	0.4	5
370	Study of the Extent of the Information of Cardiologists from São Paulo City, Brazil, Regarding a Lowâ€Prevalence Entity: Brugada Syndrome. Annals of Noninvasive Electrocardiology, 2008, 13, 352-363.	0.5	5
371	Cardiac Arrhythmias: Reentry and Triggered Activity. , 2001, , 1153-1179.		5
372	The Brugada Syndrome. , 0, , 427-446.		5
373	Value of 12 Lead Electrocardiogram and Derived Methodologies in the Diagnosis of Brugada Disease. , 0, , 87-110.		4
374	Mechanism of the Preferential Block of the Atrial Sodium Current byÂRanolazine. Biophysical Journal, 2009, 96, 250a.	0.2	4
375	Theophylline: The forgotten antiarrhythmic drug… now for malignant early repolarization. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 441-443.	0.5	4
376	Tpeakâ€ŧend interval as a marker of arrhythmic risk in early repolarization syndrome. Journal of Cardiovascular Electrophysiology, 2019, 30, 2106-2107.	0.8	4
377	Reply to the Editor— Tpeak-Tend is alive and well. Heart Rhythm, 2019, 16, e49-e50.	0.3	4
378	The Contribution of K+ Currents to Electrical Heterogeneity Across the Canine Ventricular Wall under Normal and Ischemic Conditions. Developments in Cardiovascular Medicine, 1996, , 439-456.	0.1	4

#	Article	IF	CITATIONS
379	The Brugada Syndrome. , 2004, , 625-632.		4
380	Clinical Cardiac Electrophysiology Fellowship Teaching Objectives for the New Millennium. Journal of Cardiovascular Electrophysiology, 2001, 12, 1433-1443.	0.8	3
381	Pharmacologic Approach to Therapy of Brugada Syndrome: Quinidine as an Alternative to ICD Therapy?. , 0, , 202-211.		3
382	Molecular Genetics of the Brugada Syndrome. , 0, , 42-51.		3
383	β-adrenergic stimulation is highly arrhythmogenic following ischemic/reperfusion injury in the isolated canine right atrium. Heart Rhythm, 2005, 2, S179-S180.	0.3	3
384	KCNH2-K897T Polymorphism Increases the Risk of Life-Threatening Arrhythmias Following Acute Myocardial Infarction. Heart Rhythm, 2010, 7, 1720.	0.3	3
385	The J Wave Syndromes and Their Role in Sudden Cardiac Death. Cardiac Electrophysiology Clinics, 2011, 3, 47-56.	0.7	3
386	Effect of autonomic influences to induce triggered activity in muscular sleeves extending into the coronary sinus of the canine heart and its suppression by ranolazine. Journal of Cardiovascular Electrophysiology, 2019, 30, 230-238.	0.8	3
387	Recognition and clinical implications of high prevalence of migraine in patients with Brugada syndrome and drugâ€induced type 1 Brugada pattern. Journal of Cardiovascular Electrophysiology, 2020, 31, 3311-3317.	0.8	3
388	Fractionated Epicardial Electrograms. JACC: Clinical Electrophysiology, 2021, 7, 258-270.	1.3	3
389	Frequency of Irritable Bowel Syndrome in Patients with Brugada Syndrome and Drug-Induced Type 1 Brugada Pattern. American Journal of Cardiology, 2021, 151, 51-56.	0.7	3
390	Cellular and Ionic Mechanisms Underlying Arrhythmogenesis. Contemporary Cardiology, 2003, , 201-251.	0.0	3
391	Ionic and Cellular Basis for Arrhythmogenesis. , 2011, , 41-64.		3
392	Short QT Interval: ECG Phenomenon and Clinical Syndrome. , 0, , 497-506.		3
393	Brugada syndrome: 12 years of progression. Acta Medica Okayama, 2004, 58, 255-61.	0.1	3
394	Cellular basis for the normal T wave and the ECG manifestations of the long QT syndrome. Journal of Electrocardiology, 1998, 30, 148.	0.4	2
395	Treatment of Brugada Syndrome with an Implantable Cardioverter Defibrillator. , 0, , 194-201.		2
396	Biophysical Analysis of Mutant Sodium Channels in Brugada Syndrome. , 0, , 26-41.		2

1

#	Article	IF	CITATIONS
397	Inherited Arrhythmogenic Diseases. , 0, , 132-146.		2
398	Biophysical Characterization of a Novel KCNJ2 Mutation Associated with Andersen-Tawil Syndrome and CPVT Mimicry. Biophysical Journal, 2009, 96, 260a-261a.	0.2	2
399	AZD1305 has Atrial-Predominant Electrophysiologic Actions and is Effective in Suppressing Atrial Fibrillation in the Dog. Heart Rhythm, 2009, 6, 1685.	0.3	2
400	Comparison of the Effects of the Transient Outward Potassium Channel Activator NS5806 on Canine Atrial and Ventricular Cardiomyocytes. Biophysical Journal, 2010, 98, 334a.	0.2	2
401	Ion Channels and Beating Heart: The Players and the Music. Neurology International, 2011, 1, e1.	0.2	2
402	Mechanisms of Cardiac Arrhythmia. , 2013, , 93-128.		2
403	Transcriptional changes associated with advancing stages of heart failure underlie atrial and ventricular arrhythmogenesis. PLoS ONE, 2019, 14, e0216928.	1.1	2
404	Intracellular uptake of agents that block the hERG channel can confound the assessment of QT interval prolongation and arrhythmic risk. Heart Rhythm, 2021, 18, 2177-2186.	0.3	2
405	Brugada Syndrome: Cellular Mechanisms and Approaches to Therapy. , 2013, , 497-536.		2
406	Mechanisms of Cardiac Arrhythmia. , 2008, , 65-132.		2
407	Contribution of Electrical Heterogeneity of Repolarization to the ECG. Contemporary Cardiology, 2003, , 111-126.	0.0	2
408	Risk stratification [corrected] of Brugada syndrome revisited. Israel Medical Association Journal, 2008, 10, 462-4.	0.1	2
409	A carvedilol analogue, VKâ€IIâ€86, prevents hypokalaemiaâ€induced ventricular arrhythmia through novel multiâ€channel effects. British Journal of Pharmacology, 2021, , .	2.7	2
410	Effects of Milrinone on Atrioventricular Conduction in the Canine Heart Under Normal Conditions, During Atrial Flutter and After Ligation and Reperfusion of the Septal Artery. Journal of Cardiovascular Electrophysiology, 1990, 1, 93-102.	0.8	1
411	Molecular biology and cellular mechanisms of cardiac arrhythmias and sudden death in infants and young children. Journal of Electrocardiology, 2001, 34, 320.	0.4	1
412	Expert's opinion. Journal of Electrocardiology, 2003, 36, 165.	0.4	1
413	Atrial Tachyarrhythmias in Brugada Syndrome. , 0, , 178-183.		1

Brugada Syndrome: Role of Genetics in Clinical Practice. , 0, , 130-139.

24

#	Article	IF	CITATIONS
415	Predisposing Factors. , 0, , 157-165.		1
416	Brugada Syndrome: Relationship to other Arrhythmogenic Syndromes. , 0, , 111-118.		1
417	History of the Brugada Syndrome. , 0, , 23-25.		1
418	P6-4. Heart Rhythm, 2006, 3, S302.	0.3	1
419	Rare syndromes, commotio cordis, sudden death in athletes. , 0, , 1148-1198.		1
420	To the Editor Response. Heart Rhythm, 2008, 5, 1091-1092.	0.3	1
421	Developmental Changes in Potassium Channel Expression in the Canine Heart: Implications for Sudden Infant Death Caused by Arrhythmias. Biophysical Journal, 2013, 104, 295a.	0.2	1
422	J wave syndromes as a cause of sudden arrhythmic death. Neurology International, 2013, 3, .	0.2	1
423	Reply to the Editor—PQ-Segment Depression in Short QT Syndrome Patients: A Novel Marker for Diagnosing Short QT Syndrome?. Heart Rhythm, 2014, 11, e8.	0.3	1
424	Call "the Cleaners― JACC: Clinical Electrophysiology, 2015, 1, 323-325.	1.3	1
425	Effectiveness of Late I Na Versus Peak I Na Block in the Setting of Ventricular Fibrillation. Circulation: Arrhythmia and Electrophysiology, 2017, 10, .	2.1	1
426	Pathophysiology of Atrial Fibrillation. Cardiovascular Medicine, 2017, , 15-25.	0.0	1
427	Genetic, Ionic, and Cellular Mechanisms Underlying the J Wave Syndromes. , 2018, , 483-493.		1
428	Evaluating the Impact of Sex and Gender in Brugada Syndrome. Journal of Innovations in Cardiac Rhythm Management, 2019, 10, 3530-3535.	0.2	1
429	Cellular Basis for T Wave : Role of M Cells. Japanese Journal of Electrocardiology, 2001, 21, 101-108.	0.0	1
430	ECG Phenomena of the Early Ventricular Repolarization. Contemporary Cardiology, 2003, , 407-425.	0.0	1
431	Electrophysiology and Pharmacology of Ventricular Repolarization. Contemporary Cardiology, 2003, , 63-89.	0.0	1
432	CLINICAL, GENETIC, MOLECULAR, AND CELLULAR ASPECTS OF THE BRUGADA SYNDROME. , 2005, , .		1

#	Article	IF	CITATIONS
433	Abstract 4413: Accelerated Inactivation of the L-type Calcium due to a Mutation in CACNB2b Underlies the Development of a Brugada ECG Phenotype. Circulation, 2008, 118, .	1.6	1
434	Genetics and Cellular Mechanisms of the J Wave Syndromes. , 2014, , 511-519.		1
435	Cellular, Molecular, and Pharmacologic Mechanisms Underlying Drug-Induced Cardiac Arrhythmogenesis. , 2005, , 37-66.		1
436	Brugada-like electrocardiographic pattern. Indian Pacing and Electrophysiology Journal, 2003, 3, 91-2.	0.3	1
437	Genetics and Sinus Node Dysfunction. Journal of Atrial Fibrillation, 2009, 1, 151.	0.5	1
438	Pulmonary Vein Sleeves as a Pharmacologic Model for the Study of Atrial Fibrillation. ElectrofisiologÃa & Arritmias, 2010, 3, 108-113.	0.0	1
439	Prognosis in Individuals with Brugada Syndrome. , 0, , 184-193.		Ο
440	Potential for Ablation Therapy in Patients with Brugada Syndrome. , 0, , 212-220.		0
441	Gender Differences in Brugada Syndrome. , 0, , 149-156.		0
442	Brugada Syndrome: Overview. , 0, , 1-22.		0
443	Genotype–Phenotype Relationship in the Brugada Syndrome. , 0, , 140-148.		Ο
444	Brugada Syndrome: Diagnostic Criteria. , 0, , 78-86.		0
445	Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel. Heart Rhythm, 2005, 2, S294.	0.3	Ο
446	Electrocardiographic differences between Timothy syndrome and LQT3 children. Heart Rhythm, 2005, 2, S222.	0.3	0
447	Genetic and biophysical basis for bupivacaine-induced ST segment elevation and VT/VF. Anesthesia-mediated acquired Brugada syndrome. Heart Rhythm, 2005, 2, S49.	0.3	Ο
448	The Role of Spatial Dispersion of Repolarization and Intramural Reentry in Inherited and Acquired Sudden Cardiac Death Syndromes. , 0, , 1-17.		0
449	Reply to the Editor–Mechanoelectrical factors in M-cell debate. Heart Rhythm, 2011, 8, e2.	0.3	0
450	Advances in the Pharmacologic Management of Atrial Fibrillation. Cardiac Electrophysiology Clinics, 2011, 3, 157-167.	0.7	0

#	Article	IF	CITATIONS
451	Descripción de la utilización de cuñas ventriculares aisladas de corazón canino en el laboratorio de electrofisiologÃa experimental. Cardiocore, 2012, 47, 127-129.	0.0	0
452	Physiological Effects of Transient Outward K+ Current Activation duringÂHeart Failure in the Canine Left Ventricle. Biophysical Journal, 2012, 102, 340a.	0.2	0
453	Author's response to Letter to the Editor from Perez and Froelicher. Journal of Electrocardiology, 2013, 46, 116.	0.4	0
454	Mechanisms of Action of Antiarrhythmic Drugs in Atrial Fibrillation. , 2013, , 141-156.		0
455	Case Scenario. Survey of Anesthesiology, 2013, 57, 140-141.	0.1	Ο
456	The Cardiac Electrophysiology Society abstracts that have published in the November issue of HeartRhythm Journal (2013;10:1741-1754) were inadvertently posted on PubMed. These abstracts were not peer-reviewed and they were posted without approval or knowledge from the authors. The error is regretted Heart Rhythm, 2014, 11, 170.	0.3	0
457	Should theophylline be added to the J wave syndrome therapeutic armamentarium?. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 439-440.	0.5	0
458	Brugada Syndrome Genetics. Developments in Cardiovascular Medicine, 2000, , 147-180.	0.1	0
459	The Brugada Syndrome. Contemporary Cardiology, 2003, , 427-445.	0.0	0
460	How Do We Measure Repolarization Inside the Heart?. Contemporary Cardiology, 2003, , 91-110.	0.0	0
461	Human Induced Pluripotent Stem Cells: Role in Patient-Specific Drug Discovery. , 2012, , 257-263.		0
462	Ionic and Cellular Mechanisms Underlying J Wave Syndromes. , 2016, , 33-76.		0
463	Genetics, Molecular Biology, and Emerging Concepts of Early Repolarization Syndrome. , 2020, , 255-268.		0
464	Short QT Syndrome. Contemporary Cardiology, 2020, , 845-866.	0.0	0
465	J Wave Syndromes: Brugada and Early Repolarization Syndromes. Contemporary Cardiology, 2020, , 745-774.	0.0	0
466	Mechanisms Underlying the Development of Cardiac Arrhythmias. Contemporary Cardiology, 2020, , 33-74.	0.0	0
467	Advances in the Pharmacological Treatment of Atrial Fibrillation. Current Medical Literature Cardiology, 2010, 29, 1-5.	0.0	0
468	Increased susceptibility to ventricular arrhythmia at low-normal and moderately-low levels of extracellular potassium in Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Rhythm, 2022, , .	0.3	0

#	Article	IF	CITATIONS
469	Electrocardiographic variables associated with underlying Brugada syndrome or drugâ€induced Type 1 Brugada pattern in patients with slow/fast atrioventricular nodal reentrant tachycardia. Journal of Arrhythmia, 0, , .	0.5	0